
Simulink®

Developing S-Functions

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Developing S-Functions

© COPYRIGHT 1998–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
October 1998 First printing Revised for Version 3.0 (Release R11)
November 2000 Second printing Revised for Version 4.0 (Release R12)
July 2002 Third printing Revised for Version 5.0 Release R13)
April 2003 Online only Revised for Version 5.1 (Release R13SP1)
April 2004 Online only Revised for Version 5.1.1 (Release R13SP1+)
June 2004 Online only Revised for Version 6.0 (Release R14)
October 2004 Online only Revised for Version 6.1 (Release R14SP1)
March 2005 Online only Revised for Version 6.2 (Release R14SP2)
September 2005 Online Only Revised for Version 6.3 (Release R14SP3)
March 2006 Online only Revised for Version 6.4 (Release 2006a)
September 2006 Online only Revised for Version 6.5 (Release 2006b)
March 2007 Online only Revised for Version 6.6 (Release 2007a)
September 2007 Online only Revised for Version 7.0 (Release 2007b)
March 2008 Online only Revised for Version 7.1 (Release 2008a)
October 2008 Online only Revised for Version 7.2 (Release 2008b)
March 2009 Online only Revised for Version 7.3 (Release 2009a)
September 2009 Online only Revised for Version 7.4 (Release 2009b)
March 2010 Online only Revised for Version 7.5 (Release 2010a)
September 2010 Online only Revised for Version 7.6 (Release 2010b)
April 2011 Online only Revised for Version 7.7 (Release 2011a)
September 2011 Online only Revised for Version 7.8 (Release 2011b)
March 2012 Online only Revised for Version 7.9 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)

Contents

Overview of S-Functions

1
What Is an S-Function? . 1-2

Use S-Functions in Models . 1-3
Overview . 1-3
Passing Parameters to S-Functions 1-5
When to Use an S-Function . 1-7

How S-Functions Work . 1-9
Introduction . 1-9
Mathematics of Simulink Blocks . 1-9
Simulation Stages . 1-10
S-Function Callback Methods . 1-12

Implementing S-Functions . 1-13
MATLAB S-Functions . 1-13
MEX S-Functions . 1-14

S-Function Callback Methods . 1-15
Callback Methods Overview . 1-15
Callback Methods for C MEX S-Functions 1-16
Callback Methods for Level-2 MATLAB S-Functions 1-18

S-Function Concepts . 1-20
Direct Feedthrough . 1-20
Dynamically Sized Arrays . 1-21
Setting Sample Times and Offsets . 1-22

S-Function Examples . 1-27
Overview of Examples . 1-27
Level-2 MATLAB S-Function Examples 1-30
Level-1 MATLAB S-Function Examples 1-30
C S-Function Examples . 1-32
Fortran S-Function Examples . 1-36

v

C++ S-Function Examples . 1-37

Selecting an S-Function Implementation

2
Available S-Function Implementations 2-2

S-Function Types . 2-3

Implement S-Functions . 2-5

S-Function Features . 2-8

S-Function Limitations . 2-12

S-Functions Incorporate Legacy C Code 2-14
Overview . 2-14
Using a Hand-Written S-Function to Incorporate Legacy
Code . 2-15

Using the S-Function Builder to Incorporate Legacy
Code . 2-17

Using the Legacy Code Tool to Incorporate Legacy Code . . 2-22

Writing S-Functions in MATLAB

3
Introduction . 3-2

Write Level-2 MATLAB S-Functions 3-4
About Level-2 MATLAB S-Functions 3-4
About Run-Time Objects . 3-5
Level-2 MATLAB S-Function Template 3-5
Level-2 MATLAB S-Function Callback Methods 3-6
Using the setup Method . 3-8

vi Contents

Example of Writing a Level-2 MATLAB S-Function 3-8
Instantiating a Level-2 MATLAB S-Function 3-12
Operations for Variable-Size Signals 3-12
Generating Code from a Level-2 MATLAB S-Function . . . 3-13
MATLAB S-Function Examples . 3-13

Maintain Level-1 MATLAB S-Functions 3-14
About the Maintenance of Level-1 MATLAB
S-Functions . 3-14

Level-1 MATLAB S-Function Arguments 3-15
Level-1 MATLAB S-Function Outputs 3-16
Define S-Function Block Characteristics 3-17
Processing S-Function Parameters 3-18
Convert Level-1 MATLAB S-Functions to Level-2 3-18

Writing S-Functions in C

4
Introduction . 4-2
About Writing C S-Functions . 4-2
Creating C MEX S-Functions . 4-3

Build S-Functions Automatically . 4-5
About Building S-Functions Automatically 4-5
Deploying the Generated S-Function 4-10
How the S-Function Builder Builds an S-Function 4-11

S-Function Builder Dialog Box . 4-12
About S-Function Builder . 4-12
Parameters/S-Function Name Pane 4-14
Port/Parameter Pane . 4-15
Initialization Pane . 4-15
Data Properties Pane . 4-16
Input Ports Pane . 4-17
Output Ports Pane . 4-18
Parameters Pane . 4-20
Data Type Attributes Pane . 4-20
Libraries Pane . 4-21
Outputs Pane . 4-23

vii

Continuous Derivatives Pane . 4-26
Discrete Update Pane . 4-27
Build Info Pane . 4-28
Example: Modeling a Two-Input/Two-Output System 4-30

Basic C MEX S-Function . 4-36
Introducing an Example of a Basic C MEX S-Function . . . 4-36
Defines and Includes . 4-39
Callback Method Implementations 4-39
Simulink/Simulink Coder Interfaces 4-41
Building the Timestwo Example . 4-42

Templates for C S-Functions . 4-43
About the Templates for C S-Functions 4-43
S-Function Source File Requirements 4-43
The SimStruct . 4-46
Data Types in S-Functions . 4-46
Compiling C S-Functions . 4-46

Integrate C Functions Using Legacy Code Tool 4-48
Overview . 4-48
Example of Integrating Existing C Functions into Simulink
Models with the Legacy Code Tool 4-51

Registering Legacy Code Tool Data Structures 4-54
Declaring Legacy Code Tool Function Specifications 4-56
Generating and Compiling the S-Functions 4-64
Generating a Masked S-Function Block for Calling a
Generated S-Function . 4-65

Forcing Simulink Accelerator Mode to Use S-Function TLC
Inlining Code . 4-65

Calling Legacy C++ Functions . 4-66
Handling Multiple Registration Files 4-66
Deploying Generated S-Functions . 4-67
Legacy Code Tool Examples . 4-67
Legacy Code Tool Limitations . 4-68

Simulink Engine Interaction with C S-Functions 4-69
Introduction . 4-69
Process View . 4-69
Data View . 4-77

Write Callback Methods . 4-82

viii Contents

S-Functions in Normal Mode Referenced Models 4-83
Supporting the Use of Multiple Instances of Referenced
Models That Are in Normal Mode 4-84

Debug C MEX S-Functions . 4-85
About Debugging C MEX S-Functions 4-85
Debug in Simulink Environment . 4-85
Debug Using Third-Party Software 4-89

Convert Level-1 C MEX S-Functions 4-93
Guidelines for Converting Level-1 C MEX S-Functions to
Level-2 . 4-93

Obsolete Macros . 4-96

Creating C++ S-Functions

5
Create a C++ Source File . 5-2

Make C++ Objects Persistent . 5-3

Build C++ S-Functions . 5-5

C++ References . 5-6

Creating Fortran S-Functions

6
Level-1 Versus Level-2 S-Functions 6-2

Create Level-1 Fortran S-Functions 6-3
Fortran MEX Template File . 6-3
Example of a Level-1 Fortran S-Function 6-3
Inline Code Generation Example . 6-6

ix

Create Level-2 Fortran S-Functions 6-8
About Creating Level-2 Fortran S-Functions 6-8
Template File . 6-8
C/Fortran Interfacing Tips . 6-8
Constructing the Gateway . 6-13
Example C MEX S-Function Calling Fortran Code 6-16

Port Legacy Code . 6-18
Find the States . 6-18
Sample Times . 6-19
Store Data . 6-19
Use Flints if Needed . 6-19
Considerations for Real Time . 6-20

Using Work Vectors

7
DWork Vector Basics . 7-2
What is a DWork Vector? . 7-2
Advantages of DWork Vectors . 7-2
DWork Vectors and the Simulink Engine 7-3
DWork Vectors and the Simulink Coder Product 7-4

Types of DWork Vectors . 7-5

How to Use DWork Vectors . 7-7
Using DWork Vectors in C MEX S-Functions 7-7
DWork Vector C MEX Macros . 7-10
Using DWork Vectors in Level-2 MATLAB S-Functions . . 7-12
Using DWork Vectors With Legacy Code 7-14

DWork Vector Examples . 7-15
General DWork Vector . 7-15
DWork Scratch Vector . 7-17
DState Work Vector . 7-19
DWork Mode Vector . 7-21
Level-2 MATLAB S-Function DWork Vector 7-24

x Contents

Elementary Work Vectors . 7-26
Description of Elementary Work Vector 7-26
Relationship to DWork Vectors . 7-26
Using Elementary Work Vectors . 7-27
Additional Work Vector Macros . 7-29
Elementary Work Vector Examples 7-30

Implementing Block Features

8
Dialog Parameters . 8-2
About Dialog Parameters . 8-2
Tunable Parameters . 8-5

Run-Time Parameters . 8-8
About Run-Time Parameters . 8-8
Creating Run-Time Parameters . 8-9
Updating Run-Time Parameters . 8-15
Tuning Run-Time Parameters . 8-16
Accessing Run-Time Parameters . 8-17

Input and Output Ports . 8-18
Creating Input Ports for C S-Functions 8-18
Creating Input Ports for Level-2 MATLAB S-Functions . . 8-22
Creating Output Ports for C S-Functions 8-24
Creating Output Ports for Level-2 MATLAB
S-Functions . 8-25

Scalar Expansion of Inputs . 8-25
Masked Multiport S-Functions . 8-27

Custom Data Types . 8-28
Custom Data Types in C S-Functions 8-28
Using Simulink Recognizable Data Types in C
S-Functions . 8-28

Using Opaque Data Types in C S-Functions 8-29
Using Custom Data Types in Level-2 MATLAB
S-Functions . 8-30

Sample Times . 8-32

xi

About Sample Times . 8-32
Block-Based Sample Times . 8-33
Specifying Port-Based Sample Times 8-37
Hybrid Block-Based and Port-Based Sample Times 8-43
Multirate S-Function Blocks . 8-44
Multirate S-Functions and Sample Time Hit
Calculations . 8-46

Synchronizing Multirate S-Function Blocks 8-46
Specifying Model Reference Sample Time Inheritance 8-47

Zero Crossings . 8-50

S-Function Compliance with the SimState 8-54
SimState Compliance Specification for Level-2 MATLAB
S-Functions . 8-54

SimState Compliance Specification for C-MEX
S-Functions . 8-55

Matrices in C S-Functions . 8-57
MX Array Manipulation . 8-57
Memory Allocation . 8-58

Function-Call Subsystems and S-Functions 8-59

Sim Viewing Devices in External Mode 8-65

Frame-Based Signals . 8-66
About Frame-Based Signals . 8-66
Using Frame-Based Signals in C S-Functions 8-66
Using Frame-Based Signals in Level-2 MATLAB
S-Functions . 8-68

Error Handling . 8-69
About Handling Errors . 8-69
Exception Free Code . 8-70
ssSetErrorStatus Termination Criteria 8-71
Checking Array Bounds . 8-72

C MEX S-Function Examples . 8-73
About S-Function Examples . 8-73

xii Contents

Continuous States . 8-73
Discrete States . 8-80
Continuous and Discrete States . 8-86
Variable Sample Time . 8-94
Array Inputs and Outputs . 8-100
Zero-Crossing Detection . 8-111
Discontinuities in Continuous States 8-129

S-Function Callback Methods — Alphabetical
List

9

S-Function SimStruct Functions Reference

10
S-Function SimStruct Functions . 10-2
About SimStruct Functions . 10-2
Language Support . 10-2
The SimStruct . 10-2

SimStruct Macros and Functions Listed by Usage 10-3
Buses . 10-3
Data Type . 10-4
Dialog Box Parameters . 10-5
Error Handling and Status . 10-6
Function Call . 10-6
Input and Output Ports . 10-7
Model Reference . 10-14
Run-Time Parameters . 10-15
Sample Time . 10-16
Simulation Information . 10-17
State and Work Vector . 10-20
Code Generation . 10-23
Miscellaneous . 10-25

xiii

S-Function Options — Alphabetical List

11

xiv Contents

1

Overview of S-Functions

• “What Is an S-Function?” on page 1-2

• “Use S-Functions in Models” on page 1-3

• “How S-Functions Work” on page 1-9

• “Implementing S-Functions” on page 1-13

• “S-Function Callback Methods” on page 1-15

• “S-Function Concepts” on page 1-20

• “S-Function Examples” on page 1-27

1 Overview of S-Functions

What Is an S-Function?
S-functions (system-functions) provide a powerful mechanism for extending
the capabilities of the Simulink® environment. An S-function is a computer
language description of a Simulink block written in MATLAB®, C, C++, or
Fortran. C, C++, and Fortran S-functions are compiled as MEX files using
the mex utility (see “Build MEX-File”). As with other MEX files, S-functions
are dynamically linked subroutines that the MATLAB interpreter can
automatically load and execute.

S-functions use a special calling syntax called the S-function API that enables
you to interact with the Simulink engine. This interaction is very similar to
the interaction that takes place between the engine and built-in Simulink
blocks.

S-functions follow a general form and can accommodate continuous, discrete,
and hybrid systems. By following a set of simple rules, you can implement
an algorithm in an S-function and use the S-Function block to add it to a
Simulink model. After you write your S-function and place its name in an
S-Function block (available in the User-Defined Functions block library), you
can customize the user interface using masking (see “What Are Masks?”).

If you have Simulink Coder™, you can use S-functions with the software. You
can also customize the code generated for S-functions by writing a Target
Language Compiler (TLC) file. For more information, see “Insert S-Function
Code”.

1-2

Use S-Functions in Models

Use S-Functions in Models

In this section...

“Overview” on page 1-3

“Passing Parameters to S-Functions” on page 1-5

“When to Use an S-Function” on page 1-7

Overview
To incorporate a C MEX S-function or legacy Level-1 MATLAB S-function into
a Simulink model, drag an S-Function block from the User-Defined Functions
block library into the model. Then specify the name of the S-function in the
S-function name field of the S-Function block’s Block Parameters dialog
box, as illustrated in the following figure.

1-3

1 Overview of S-Functions

In this example, the model contains an S-Function block that references an
instance of the C MEX file for the S-function timestwo.c.

1-4

Use S-Functions in Models

Note If the MATLAB path includes a C MEX file and a MATLAB file having
the same name referenced by an S-Function block, the S-Function block uses
the C MEX file.

To incorporate a Level-2 MATLAB S-function into a model, drag a Level-2
MATLAB S-Function block from the User-Defined Functions library into the
model. Specify the name of the S-function in the S-function name field.

Passing Parameters to S-Functions
The S-Function block S-function parameters and Level-2 MATLAB
S-Function block Parameters fields allow you to specify parameter values
to pass to the corresponding S-function. To use these fields, you must
know the parameters the S-function requires and the order in which the
function requires them. (If you do not know, consult the S-function’s author,
documentation, or source code.) Enter the parameters, separated by a
comma, in the order required by the S-function. The parameter values can be
constants, names of variables defined in the MATLAB or model workspace, or
MATLAB expressions.

The following example illustrates usage of the Parameters field to enter
user-defined parameters for a Level-2 MATLAB S-function.

1-5

1 Overview of S-Functions

The model msfcndemo_limintm in this example incorporates the sample
S-function msfcn_limintm.m.

1-6

Use S-Functions in Models

The msfcn_limintm.m S-function accepts three parameters: a lower bound,
an upper bound, and an initial condition. The S-function outputs the time
integral of the input signal if the time integral is between the lower and upper
bounds, the lower bound if the time integral is less than the lower bound, and
the upper bound if the time integral is greater than the upper bound. The
dialog box in the example specifies a lower and upper bound and an initial
condition of -5.0, 5.0, and 0, respectively. The scope shows the resulting
output when the input is a sine wave of amplitude 1.

See “Processing S-Function Parameters” on page 3-18 and “Error Handling”
on page 8-69 for information on how to access user-specified parameters in
an S-function.

You can use the masking facility to create custom dialog boxes and icons for
your S-Function blocks. Masked dialog boxes can make it easier to specify
additional parameters for S-functions. For a discussion on masking, see
“What Are Masks?”.

When to Use an S-Function
You can use S-functions for a variety of applications, including:

• Creating new general purpose blocks

• Adding blocks that represent hardware device drivers

1-7

1 Overview of S-Functions

• Incorporating existing C code into a simulation (see “Integrate C Functions
Using Legacy Code Tool” on page 4-48)

• Describing a system as a set of mathematical equations

• Using graphical animations (see the inverted pendulum example,
penddemo)

The most common use of S-functions is to create custom Simulink blocks (see
“When to Create Custom Blocks”). When you use an S-function to create
a general-purpose block, you can use it many times in a model, varying
parameters with each instance of the block.

1-8

How S-Functions Work

How S-Functions Work

In this section...

“Introduction” on page 1-9

“Mathematics of Simulink Blocks” on page 1-9

“Simulation Stages” on page 1-10

“S-Function Callback Methods” on page 1-12

Introduction
To create S-functions, you need to understand how S-functions work. Such
knowledge requires an understanding of how the Simulink engine simulates a
model, including the mathematics of blocks. This section begins by explaining
the mathematical relationships between the inputs, states, and outputs of
a block.

Mathematics of Simulink Blocks
A Simulink block consists of a set of inputs, a set of states, and a set of
outputs, where the outputs are a function of the simulation time, the inputs,
and the states.

The following equations express the mathematical relationships between the
inputs, outputs, states, and simulation time

y f t x u
x f t x ud

=
=

0(, ,)
(, ,)

 (Outputs)
 (Derivatives)

 (Update)x f t x x ud u c dk k+
=

1
(, , ,),

where x x xc d= [;].

1-9

1 Overview of S-Functions

Simulation Stages
Execution of a Simulink model proceeds in stages. First comes the
initialization phase. In this phase, the Simulink engine incorporates library
blocks into the model, propagates signal widths, data types, and sample times,
evaluates block parameters, determines block execution order, and allocates
memory. The engine then enters a simulation loop, where each pass through
the loop is referred to as a simulation step. During each simulation step,
the engine executes each block in the model in the order determined during
initialization. For each block, the engine invokes functions that compute the
block states, derivatives, and outputs for the current sample time.

The following figure illustrates the stages of a simulation. The inner
integration loop takes place only if the model contains continuous states.
The engine executes this loop until the solver reaches the desired accuracy
for the state computations. The entire simulation loop then continues until
the simulation is complete. See “Simulating Dynamic Systems” in Using
Simulink for more detailed information on how the engine executes a model.
See “Simulink Engine Interaction with C S-Functions” on page 4-69 for a
description of how the engine calls the S-function API during initialization
and simulation.

1-10

How S-Functions Work

How the Simulink® Engine Performs Simulation
1-11

1 Overview of S-Functions

S-Function Callback Methods
An S-function comprises a set of S-function callback methods that perform
tasks required at each simulation stage. During simulation of a model, at
each simulation stage, the Simulink engine calls the appropriate methods for
each S-Function block in the model. Tasks performed by S-function callback
methods include:

• Initialization — Prior to the first simulation loop, the engine initializes the
S-function, including:

- Initializing the SimStruct, a simulation structure that contains
information about the S-function

- Setting the number and dimensions of input and output ports

- Setting the block sample times

- Allocating storage areas

• Calculation of next sample hit — If you created a variable sample time
block, this stage calculates the time of the next sample hit; that is, it
calculates the next step size.

• Calculation of outputs in the major time step — After this call is complete,
all the block output ports are valid for the current time step.

• Update of discrete states in the major time step — In this call, the block
performs once-per-time-step activities such as updating discrete states.

• Integration — This applies to models with continuous states and/or
nonsampled zero crossings. If your S-function has continuous states,
the engine calls the output and derivative portions of your S-function at
minor time steps. This is so the solvers can compute the states for your
S-function. If your S-function has nonsampled zero crossings, the engine
also calls the output and zero-crossings portions of your S-function at minor
time steps so that it can locate the zero crossings.

Note See “Simulating Dynamic Systems” for an explanation of major and
minor time steps.

1-12

Implementing S-Functions

Implementing S-Functions

In this section...

“MATLAB S-Functions” on page 1-13

“MEX S-Functions” on page 1-14

MATLAB S-Functions
Level-2 MATLAB S-functions allow you to create blocks with many of the
features and capabilities of Simulink built-in blocks, including:

• Multiple input and output ports

• The ability to accept vector or matrix signals

• Support for various signal attributes including data type, complexity, and
signal frames

• Ability to operate at multiple sample rates

A Level-2 MATLAB S-function consists of a setup routine to configure the
basic properties of the S-function, and a number of callback methods that the
Simulink engine invokes at appropriate times during the simulation.

A basic annotated version of the template resides at msfuntmpl_basic.m.

The template consists of a top-level setup function and a set of skeleton local
functions, each of which corresponds to a particular callback method. Each
callback method performs a specific S-function task at a particular point in
the simulation. The engine invokes the local functions using function handles
defined in the setup routine. See “Level-2 MATLAB S-Function Callback
Methods” on page 3-6 for a table of the supported Level-2 MATLAB S-function
callback methods.

A more detailed Level-2 MATLAB S-function template resides at
msfuntmpl.m.

We recommend that you follow the structure and naming conventions of the
templates when creating Level-2 MATLAB S-functions. This makes it easier
for others to understand and maintain the MATLAB S-functions that you

1-13

1 Overview of S-Functions

create. See “Write Level-2 MATLAB S-Functions” on page 3-4 for information
on creating Level-2 MATLAB S-functions.

MEX S-Functions
Like a Level-2 MATLAB S-function, a MEX S-function consists of a set
of callback methods that the Simulink engine invokes to perform various
block-related tasks during a simulation. MEX S-functions can be implemented
in C, C++, or Fortran. The engine directly invokes MEX S-function routines
instead of using function handles as with MATLAB S-functions. Because the
engine invokes the functions directly, MEX S-functions must follow standard
naming conventions specified by the S-function API.

An annotated C MEX S-function template resides at sfuntmpl_doc.c.

The template contains skeleton implementations of all the required and
optional callback methods that a C MEX S-function can implement.

For a more basic version of the template see sfuntmpl_basic.c.

MEX Versus MATLAB S-Functions
Level-2 MATLAB and MEX S-functions each have advantages. The advantage
of Level-2 MATLAB S-functions is speed of development. Developing Level-2
MATLAB S-functions avoids the time consuming compile-link-execute
cycle required when developing in a compiled language. Level-2 MATLAB
S-functions also have easier access to MATLAB toolbox functions and can
utilize the MATLAB Editor/Debugger.

MEX S-functions are more appropriate for integrating legacy code into a
Simulink model. For more complicated systems, MEX S-functions may
simulate faster than MATLAB S-functions because the Level-2 MATLAB
S-function calls the MATLAB interpreter for every callback method.

See “Available S-Function Implementations” on page 2-2 for information on
choosing the type of S-function best suited for your application.

1-14

S-Function Callback Methods

S-Function Callback Methods

In this section...

“Callback Methods Overview” on page 1-15

“Callback Methods for C MEX S-Functions” on page 1-16

“Callback Methods for Level-2 MATLAB S-Functions” on page 1-18

Callback Methods Overview
Every S-function must implement a set of methods, called callback methods,
that the Simulink engine invokes when simulating a model that contains
the S-function.

The S-function callback methods perform tasks required at each simulation
stage. During simulation of a model, at each simulation stage the Simulink
engine calls the appropriate methods for each S-Function block in the model.

Tasks performed by S-function callback methods include:

• Initialization — Prior to the first simulation loop, the engine initializes
the S-function, including:

- Initializing the SimStruct, a simulation structure that contains
information about the S-function

- Setting the number and dimensions of input and output ports

- Setting the block sample times

- Allocating storage areas

• Calculation of next sample hit — If you created a variable sample
time block, this stage calculates the time of the next sample hit; that is, it
calculates the next step size.

• Calculation of outputs in the major time step — After this call is
complete, all the block output ports are valid for the current time step.

• Update of discrete states in the major time step — In this call, the
block performs once-per-time-step activities such as updating discrete
states.

1-15

1 Overview of S-Functions

• Integration — This applies to models with continuous states and/or
nonsampled zero crossings. If your S-function has continuous states,
the engine calls the output and derivative portions of your S-function at
minor time steps. This is so the solvers can compute the states for your
S-function. If your S-function has nonsampled zero crossings, the engine
also calls the output and zero-crossings portions of your S-function at minor
time steps so that it can locate the zero crossings.

Note See “Simulating Dynamic Systems” for an explanation of major and
minor time steps.

Some callback methods are optional. The engine invokes an optional callback
only if the S-function defines the callback.

Callback Methods for C MEX S-Functions

Required Callback Methods
C MEX S-functions must implement the following callback methods:

• mdlInitializeSizes – Specifies the sizes of various parameters in the
SimStruct, such as the number of output ports for the block.

• mdlInitializeSampleTimes – Specifies the sample time(s) of the block.

• mdlOutputs – Calculates the output of the block.

• mdlTerminate – Performs any actions required at the termination of the
simulation. If no actions are required, this function can be implemented as
a stub.

For information on writing callback methods, see “Write Callback Methods”
on page 4-82.

Optional Callback Methods
The following callback methods are optional. The engine invokes an optional
callback only if the S-function defines the callback.

1-16

S-Function Callback Methods

• mdlCheckParameters

• mdlDerivatives

• mdlDisable

• mdlEnable

• mdlGetSimState

• mdlGetTimeOfNextVarHit

• mdlInitializeConditions

• mdlProcessParameters

• mdlProjection

• mdlRTW

• mdlSetDefaultPortComplexSignals

• mdlSetDefaultPortDataTypes

• mdlSetDefaultPortDimensionInfo

• mdlSetInputPortComplexSignal

• mdlSetInputPortDataType

• mdlSetInputPortDimensionInfo

• mdlSetInputPortDimensionsModeFcn

• mdlSetInputPortFrameData

• mdlSetInputPortSampleTime

• mdlSetInputPortWidth

• mdlSetOutputPortComplexSignal

• mdlSetOutputPortDataType

• mdlSetOutputPortDimensionInfo

• mdlSetOutputPortSampleTime

• mdlSetOutputPortWidth

• mdlSetSimState

• mdlSetWorkWidths

1-17

1 Overview of S-Functions

• mdlSimStatusChange

• mdlStart

• mdlUpdate

• mdlZeroCrossings

Callback Methods for Level-2 MATLAB S-Functions

Required Callback Methods
Level-2 MATLAB S-functions must implement the following callback methods:

• setup – Specifies the sizes of various parameters in the SimStruct, such as
the number of output ports for the block.

• Outputs – Calculates the output of the block.

• Terminate – Performs any actions required at the termination of the
simulation. If no actions are required, this function can be implemented as
a stub.

For information on writing callback methods, see “Write Level-2 MATLAB
S-Functions” on page 3-4.

Optional Callback Methods
The following callback methods are optional. The engine invokes an optional
callback only if the S-function defines the callback.

• CheckParameters

• Derivatives

• Disable

• Enable

• GetSimState

• InitializeConditions

• PostPropagationSetup

• ProcessParameters

1-18

S-Function Callback Methods

• Projection

• SetInputPortComplexSignal

• SetInputPortDataType

• SetInputPortDimensions

• SetInputPortDimensionsMode

• SetInputPortSamplingMode

• SetInputPortSampleTime

• SetOutputPortComplexSignal

• SetOutputPortDataType

• SetOutputPortDimensions

• SetOutputPortSampleTime

• SetSimState

• SimStatusChange

• Start

• Update

• WriteRTW

1-19

1 Overview of S-Functions

S-Function Concepts

In this section...

“Direct Feedthrough” on page 1-20

“Dynamically Sized Arrays” on page 1-21

“Setting Sample Times and Offsets” on page 1-22

Direct Feedthrough
Direct feedthrough means that the output (or the variable sample time for
variable sample time blocks) is controlled directly by the value of an input
port signal. Typically, an S-function input port has direct feedthrough if

• The output function (mdlOutputs) is a function of the input u. That is, there
is direct feedthrough if the input u is accessed by mdlOutputs. Outputs can
also include graphical outputs, as in the case of an XY Graph scope.

• The “time of next hit” function (mdlGetTimeOfNextVarHit) of a variable
sample time S-function accesses the input u.

An example of a system that requires its inputs (that is, has direct
feedthrough) is the operation

y k u= × ,

where u is the input, k is the gain, and y is the output.

An example of a system that does not require its inputs (that is, does not have
direct feedthrough) is the simple integration algorithm

y x= ,

x u= ,

where x is the state, x is the state derivative with respect to time, u is the
input, and y is the output. Simulink integrates the variable x.

1-20

S-Function Concepts

It is very important to set the direct feedthrough flag correctly because it
affects the execution order of the blocks in your model and is used to detect
algebraic loops (see “Algebraic Loops” in Using Simulink). If the simulation
results for a model containing your S-function do not converge, or the
simulation fails, you may have the direct feedthrough flag set incorrectly.
Try turning on the direct feedthrough flag and setting the Algebraic
loop solver diagnostic to warning (see the “Algebraic loop” option on the
“Diagnostics Pane: Solver” reference page in Simulink Graphical User
Interface). Subsequently running the simulation displays any algebraic loops
in the model and shows if the engine has placed your S-function within an
algebraic loop.

Dynamically Sized Arrays
You can write your S-function to support arbitrary input dimensions. In this
case, the Simulink engine determines the actual input dimensions when
the simulation is started by evaluating the dimensions of the input vectors
driving the S-function. Your S-function can also use the input dimensions to
determine the number of continuous states, the number of discrete states,
and the number of outputs.

Note A dynamically sized input can have a different size for each instance of
the S-function in a particular model or during different simulations, however
the input size of each instance of the S-function is static over the course of a
particular simulation.

A C MEX S-function and Level-2 MATLAB S-function can have multiple input
and output ports and each port can have different dimensions. The number of
dimensions and the size of each dimension can be determined dynamically.

For example, the following illustration shows two instances of the same
S-Function block in a model.

1-21

1 Overview of S-Functions

The upper S-Function block is driven by a block with a three-element output
vector. The lower S-Function block is driven by a block with a scalar output.
By specifying that the S-Function block has dynamically sized inputs, the
same S-function can accommodate both situations. The Simulink engine
automatically calls the block with the appropriately sized input vector.
Similarly, if other block characteristics, such as the number of outputs or the
number of discrete or continuous states, are specified as dynamically sized,
the engine defines these vectors to be the same length as the input vector.

See “Input and Output Ports” on page 8-18 for more information on
configuring S-function input and output ports.

Setting Sample Times and Offsets
Both Level-2 MATLAB and C MEX S-functions provide the following sample
time options, which allow for a high degree of flexibility in specifying when an
S-function executes:

• Continuous sample time — For S-functions that have continuous states
and/or nonsampled zero crossings (see “Simulating Dynamic Systems” for
an explanation of zero crossings). For this type of S-function, the output
changes in minor time steps.

• Continuous, but fixed in minor time step sample time — For S-functions
that need to execute at every major simulation step, but do not change
value during minor time steps.

• Discrete sample time — If the behavior of your S-function is a function of
discrete time intervals, you can define a sample time to control when the
Simulink engine calls the S-function. You can also define an offset that
delays each sample time hit. The value of the offset cannot exceed the
corresponding sample time.

A sample time hit occurs at time values determined by the formula

1-22

S-Function Concepts

TimeHit = (n * period) + offset

where the integer n is the current simulation step. The first value of n is
always zero.

If you define a discrete sample time, the engine calls the S-function
mdlOutputs and mdlUpdate routines at each sample time hit (as defined
in the previous equation).

• Variable sample time — A discrete sample time where the intervals
between sample hits can vary. At the start of each simulation step,
S-functions with variable sample times are queried for the time of the next
hit.

• Inherited sample time — Sometimes an S-function has no inherent sample
time characteristics (that is, it is either continuous or discrete, depending
on the sample time of some other block in the system). In this case, you
can specify that the sample time is inherited. A simple example of this is a
Gain block that inherits its sample time from the block driving it.

An S-function can inherit its sample time from

- The driving block

- The destination block

- The fastest sample time in the system

To specify an S-function sample time is inherited, use -1 in Level-2
MATLAB S-functions and INHERITED_SAMPLE_TIME in C MEX S-functions
as the sample time. For more information on the propagation of sample
times, see “How Propagation Affects Inherited Sample Times” in the
Simulink User’s Guide.

S-functions can be either single or multirate; a multirate S-function has
multiple sample times.

Sample times are specified in pairs in this format: [sample_time,
offset_time].

Valid C MEX S-Function Sample Times
The valid sample time pairs for a C MEX S-function are

1-23

1 Overview of S-Functions

[CONTINUOUS_SAMPLE_TIME, 0.0]
[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
[discrete_sample_time_period, offset]
[VARIABLE_SAMPLE_TIME, 0.0]

where

CONTINUOUS_SAMPLE_TIME = 0.0
FIXED_IN_MINOR_STEP_OFFSET = 1.0
VARIABLE_SAMPLE_TIME = -2.0

and variable names in italics indicate that a real value is required.

Alternatively, you can specify that the sample time is inherited from the
driving block. In this case, the C MEX S-function has only one sample time
pair, either

[INHERITED_SAMPLE_TIME, 0.0]

or

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

where

INHERITED_SAMPLE_TIME = -1.0

Valid Level-2 MATLAB S-Function Sample Times
The valid sample time pairs for a Level-2 MATLAB S-function are

[0 offset] % Continuous sample time
[discrete_sample_time_period, offset] % Discrete sample time
[-1, 0] % Inherited sample time
[-2, 0] % Variable sample time

where variable names in italics indicate that a real value is required. When
using a continuous sample time, an offset of 1 indicates the output is fixed
in minor integration time steps. An offset of 0 indicates the output changes
at every minor integration time step.

1-24

S-Function Concepts

Guidelines for Choosing a Sample Time
Use the following guidelines for help with specifying sample times:

• A continuous S-function that changes during minor integration steps
should register the [CONTINUOUS_SAMPLE_TIME, 0.0] sample time.

• A continuous S-function that does not change during minor
integration steps should register the [CONTINUOUS_SAMPLE_TIME,
FIXED_IN_MINOR_STEP_OFFSET] sample time.

• A discrete S-function that changes at a specified rate should register the
discrete sample time pair, [discrete_sample_time_period, offset],
where

discrete_sample_period > 0.0

and

0.0 offset < discrete_sample_period

• A discrete S-function that changes at a variable rate should register the
variable-step discrete sample time.

[VARIABLE_SAMPLE_TIME, 0.0]

In a C MEX S-function, the mdlGetTimeOfNextVarHit routine is called to
get the time of the next sample hit for the variable-step discrete task. In
a Level-2 MATLAB S-function, the NextTimeHit property is set in the
Outputs method to set the next sample hit.

If your S-function has no intrinsic sample time, you must indicate that your
sample time is inherited. There are two cases:

• An S-function that changes as its input changes, even during minor
integration steps, should register the [INHERITED_SAMPLE_TIME, 0.0]
sample time.

• An S-function that changes as its input changes, but does not
change during minor integration steps (that is, remains fixed during
minor time steps), should register the [INHERITED_SAMPLE_TIME,
FIXED_IN_MINOR_STEP_OFFSET] sample time.

1-25

1 Overview of S-Functions

The Scope block is a good example of this type of block. This block runs at
the rate of its driving block, either continuous or discrete, but never runs
in minor steps. If it did, the scope display would show the intermediate
computations of the solver rather than the final result at each time point.

See “Sample Times” on page 8-32 for information on implementing different
types of sample times in S-functions.

1-26

S-Function Examples

S-Function Examples

In this section...

“Overview of Examples” on page 1-27

“Level-2 MATLAB S-Function Examples” on page 1-30

“Level-1 MATLAB S-Function Examples” on page 1-30

“C S-Function Examples” on page 1-32

“Fortran S-Function Examples” on page 1-36

“C++ S-Function Examples” on page 1-37

Overview of Examples
To run an example:

1 In the MATLAB Command Window, enter sfundemos.

The S-function example library opens.

1-27

1 Overview of S-Functions

Each block represents a category of S-function examples.

2 Double-click a category to display the examples that it includes. For
example, click C-files.

1-28

S-Function Examples

3 Double-click a block to open and run the example that it represents.

It might be helpful to examine some sample S-functions as you read the next
chapters. Code for the examples is stored in the following folder under the
MATLAB root folder.

1-29

1 Overview of S-Functions

MATLAB code toolbox/simulink/simdemos/simfeatures

C, C++, and Fortran code toolbox/simulink/simdemos/simfeatures/src

Level-2 MATLAB S-Function Examples
The matlabroot/toolbox/simulink/simdemos/simfeatures folder contains
many Level-2 MATLAB S-functions. Consider starting off by looking at these
files.

Filename Model Name Description

msfcn_dsc.m msfcndemo_sfundsc1 Implement an S-function with an
inherited sample time.

msfcn_limintm.m msfcndemo_limintm Implement a continuous limited
integrator where the output is
bounded by lower and upper bounds
and includes initial conditions.

msfcn_multirate.m msfcndemo_multirate Implement a multirate system.

msfcn_times_two.m msfcndemo_timestwo Implement an S-function that
doubles its input.

msfcn_unit_delay.m msfcndemo_sfundsc2 Implement a unit delay.

msfcn_varpulse.m msfcndemo_varpulse Implement a variable pulse width
generator by calling set_param
from within a Level-2 MATLAB
S-function. Also demonstrates how
to use custom set and get methods
for the block SimState.

msfcn_vs.m msfcndemo_vsfunc Implement a variable sample time
block in which the first input is
delayed by an amount of time
determined by the second input.

Level-1 MATLAB S-Function Examples
The matlabroot/toolbox/simulink/simdemos/simfeatures folder also
contains many Level-1 MATLAB S-functions, provided as reference for legacy

1-30

S-Function Examples

models. Most of these Level-1 MATLAB S-functions do not have associated
example models.

Filename Description

csfunc.m Define a continuous system in state-space format.

dsfunc.m Define a discrete system in state-space format.

limintm.m Implement a continuous limited integrator where the
output is bounded by lower and upper bounds and
includes initial conditions.

mixedm.m Implement a hybrid system consisting of a continuous
integrator in series with a unit delay.

sfun_varargm.m Implement an S-function that shows how to use the
MATLAB command varargin.

vsfunc.m Illustrate how to create a variable sample time block.
This S-function implements a variable step delay in
which the first input is delayed by an amount of time
determined by the second input.

1-31

1 Overview of S-Functions

C S-Function Examples
The matlabroot/toolbox/simulink/simdemos/simfeatures/src folder
contains examples of C MEX S-functions, many of which have a MATLAB
S-function counterpart. The C MEX S-functions are listed in the following
table.

Filename Model Name Description

barplot.c sfcndemo_barplot Access Simulink signals without using
the standard block inputs.

csfunc.c sfcndemo_csfunc Implement a continuous system.

dlimintc.c No model available Implement a discrete-time limited
integrator.

dsfunc.c sfcndemo_dsfunc Implement a discrete system.

limintc.c No model available Implement a limited integrator.

mixedm.c sfcndemo_mixedm Implement a hybrid dynamic system
consisting of a continuous integrator
(1/s) in series with a unit delay (1/z).

mixedmex.c sfcndemo_mixedmex Implement a hybrid dynamic system
with a single output and two inputs.

slexQuantizeSFcn.c sfcndemo_sfun_quantize Implement a vectorized quantizer.
Quantizes the input into steps as
specified by the quantization interval
parameter, q.

sdotproduct.c sfcndemo_sdotproduct Compute dot product
(multiply-accumulate) of two real or
complex vectors.

sfbuilder_bususage.c sfbuilder_bususage Access S-Function Builder with a bus
input and output.

sftable2.c No model available Implement a two-dimensional table
lookup.

sfun_atol.c sfcndemo_sfun_atol Set different absolute tolerances for each
continuous state.

1-32

S-Function Examples

Filename Model Name Description

sfun_cplx.c sfcndemo_cplx Add complex data for an S-function with
one input port and one parameter.

sfun_directlook.c No model available Implement a direct 1-D lookup.

sfun_dtype_io.c sfcndemo_dtype_io Implement an S-function that uses
Simulink data types for inputs and
outputs.

sfun_dtype_param.c sfcndemo_dtype_param Implement an S-function that uses
Simulink data types for parameters.

sfun_dynsize.c sfcndemo_sfun_dynsize Implements dynamically-sized outputs .

sfun_errhdl.c sfcndemo_sfun_errhdl Check parameters using the
mdlCheckParameters S-function
routine.

sfun_fcncall.c sfcndemo_sfun_fcncall Execute function-call subsystems on the
first and second output elements.

sfun_frmad.c sfcndemo_frame Implement a frame-based A/D converter.

sfun_frmda.c sfcndemo_frame Implement a frame-based D/A converter.

sfun_frmdft.c sfcndemo_frame Implement a multichannel frame-based
Discrete-Fourier transformation (and its
inverse).

sfun_frmunbuff.c sfcndemo_frame Implement a frame-based unbuffer
block.

sfun_multiport.c sfcndemo_sfun_multiport Configure multiple input and output
ports.

sfun_manswitch.c No model available Implement a manual switch.

sfun_matadd.c sfcndemo_matadd Add matrices in an S-function with one
input port, one output port, and one
parameter.

sfun_multirate.c sfcndemo_sfun_multirate Demonstrate how to specify port-based
sample times.

sfun_port_constant.c sfcndemo_port_constant Demonstrate how to specify constant
port-based sample times.

1-33

1 Overview of S-Functions

Filename Model Name Description

sfun_port_triggered.csfcndemo_port_triggered Demonstrate how to use port-based
sample times in a triggered subsystem.

sfun_runtime1.c sfcndemo_runtime Implement run-time parameters for all
tunable parameters.

sfun_runtime2.c sfcndemo_runtime Register individual run-time
parameters.

sfun_runtime3.c sfcndemo_runtime Register dialog parameters as run-time
parameters.

sfun_runtime4.c sfcndemo_runtime Implement run-time parameters as a
function of multiple dialog parameters.

sfun_simstate.c sfcndemo_sfun_simstate Demonstrate the S-function API for
saving and restoring the SimState.

sfun_zc.c sfcndemo_sfun_zc Demonstrate use of nonsampled zero
crossings to implement abs(u). This
S-function is designed to be used with a
variable-step solver.

sfun_zc_sat.c sfcndemo_sfun_zc_sat Demonstrate zero crossings with
saturation.

sfunmem.c sfcndemo_sfunmem Implement a one-integration-step delay
and hold memory function.

simomex.c sfcndemo_simomex Implement a single-input, two-output
state-space dynamic system described
by the state-space equations:

dx/dt = Ax + Bu
y = Cx + Du

where x is the state vector, u is vector of
inputs, and y is the vector of outputs.

1-34

S-Function Examples

Filename Model Name Description

stspace.c sfcndemo_stspace Implement a set of state-space
equations. You can turn this into a
new block by using the S-Function
block and mask facility. This example
MEX file performs the same function
as the built-in State-Space block. This
is an example of a MEX file where the
number of inputs, outputs, and states is
dependent on the parameters passed in
from the workspace.

stvctf.c sfcndemo_stvctf Implement a continuous-time transfer
function whose transfer function
polynomials are passed in via the input
vector. This is useful for continuous time
adaptive control applications.

stvdtf.c sfcndemo_stvdtf Implement a discrete-time transfer
function whose transfer function
polynomials are passed in via the input
vector. This is useful for discrete-time
adaptive control applications.

stvmgain.c sfcndemo_stvmgain Implement a time-varying matrix gain.

table3.c No model available Implement a 3-D lookup table.

timestwo.c sfcndemo_timestwo Implement a C MEX S-function that
doubles its input.

vdlmintc.c No model available Implement a discrete-time vectorized
limited integrator.

vdpmex.c sfcndemo_vdpmex Implement the Van der Pol equation.

1-35

1 Overview of S-Functions

Filename Model Name Description

vlimintc.c No model available Implement a vectorized limited
integrator.

vsfunc.c sfcndemo_vsfunc Illustrate how to create a variable
sample time block. This block
implements a variable-step delay in
which the first input is delayed by
an amount of time determined by the
second input.

Fortran S-Function Examples
The following table lists sample Fortran S-functions available in the
matlabroot/toolbox/simulink/simdemos/simfeatures/src folder.

Filename Model Name Description

sfun_timestwo_for.F sfcndemo_timestwo_for Implement a Level-1 Fortran
S-function that represents the
timestwo.c S-function.

sfun_atmos.c
sfun_atmos_sub.F

sfcndemo_atmos Calculate the 1976 standard
atmosphere to 86 km using a
Fortran subroutine.

1-36

S-Function Examples

C++ S-Function Examples
The following table lists sample C++ S-functions available in the
matlabroot/toolbox/simulink/simdemos/simfeatures/src folder.

Filename Model Name Description

sfun_counter_cpp.cpp sfcndemo_counter_cpp Store a C++ object in the pointers
vector PWork.

1-37

1 Overview of S-Functions

1-38

2

Selecting an S-Function
Implementation

• “Available S-Function Implementations” on page 2-2

• “S-Function Types” on page 2-3

• “Implement S-Functions” on page 2-5

• “S-Function Features” on page 2-8

• “S-Function Limitations” on page 2-12

• “S-Functions Incorporate Legacy C Code” on page 2-14

2 Selecting an S-Function Implementation

Available S-Function Implementations
You can implement your S-function in one of five ways:

• A Level-1 MATLAB S-function provides a simple MATLAB interface
to interact with a small portion of the S-function API. Level-2 MATLAB
S-functions supersede Level-1 MATLAB S-functions.

• A Level-2 MATLAB S-function provides access to a more extensive set
of the S-function API and supports code generation. In most cases, use a
Level-2 MATLAB S-function when you want to implement your S-function
in MATLAB.

• A handwritten C MEX S-function provides the most programming
flexibility. You can implement your algorithm as a C MEX S-function or
write a wrapper S-function to call existing C, C++, or Fortran code. Writing
a new S-function requires knowledge of the S-function API and, if you
want to generate inlined code for the S-function, the Target Language
Compiler (TLC).

• The S-Function Builder is a graphical user interface for programming
a subset of S-function functionality. If you are new to writing C MEX
S-functions, you can use the S-Function Builder to generate new
S-functions or incorporate existing C or C++ code without interacting
with the S-function API. The S-Function Builder can also generate TLC
files for inlining your S-function during code generation with the Simulink
Coder product.

• The Legacy Code Tool is a set of MATLAB commands that helps
you create an S-function to incorporate legacy C or C++ code. Like the
S-Function Builder, the Legacy Code Tool can generate a TLC file to inline
your S-function during code generation. The Legacy Code Tool provides
access to fewer of the methods in the S-function API than the S-Function
Builder or a handwritten C MEX S-function.

The following sections describe the uses, features, and differences of these
S-function implementations. The last section compares using a handwritten
C MEX S-function, the S-Function Builder, and the Legacy Code Tool to
incorporate an existing C function into your Simulink model.

2-2

S-Function Types

S-Function Types
Consider the following questions if you are unclear about what type of
S-function is best for your application.

If you... Then use...

Are a MATLAB programmer with little or
no C programming experience

A Level-2 MATLAB S-function, especially if you do
not need to generate code for a model containing
the S-function (see “Write Level-2 MATLAB
S-Functions” on page 3-4).

Need to generate code for a model
containing the S-function

Either a Level-2 MATLAB S-function or a C MEX
S-functions. Level-2 MATLAB S-functions require
that you write a Target Language Compiler (TLC)
file for your S-function, before generating code. C
MEX S-functions, however, automatically support
code generation.

Need the simulation to run faster A C MEX S-function, even if you do not need to
generate code (see “Creating C MEX S-Functions”
on page 4-3). For complicated systems, Level-2
MATLAB S-functions simulate slower than C MEX
S-functions because they call out to the MATLAB
interpreter.

Need to implement the S-function in C,
but have no previous experience writing
C MEX S-functions

The S-Function Builder.

Are incorporating legacy code into the
model

Any S-function, with the exception of a Level-1
MATLAB S-function. Consider using the Legacy
Code Tool if your legacy function calculates only
outputs, not dynamic states (see “Integrate C
Functions Using Legacy Code Tool” on page 4-48).
Otherwise, consider using the S-Function Builder. If
you need to call the legacy code during simulation,

2-3

2 Selecting an S-Function Implementation

If you... Then use...

do not use a Level-2 MATLAB S-function because
they call legacy code only through their TLC files.

Need to generate embeddable code for an
S-function that incorporates legacy code

The Legacy Code Tool if your legacy function
calculates only outputs. Otherwise, use a
handwritten C MEX S-function or the S-Function
Builder.

2-4

Implement S-Functions

Implement S-Functions
The following table gives an overview of how to write different types of
S-functions. See the associated sections of the S-function documentation for
more details on how to implement S-functions using a particular method.

Note For backward compatibility, the following table and sections contain
information about Level-1 MATLAB S-functions. However, use the Level-2
MATLAB S-function API to develop new MATLAB S-functions.

S-Function Type Implementation

Level-1 MATLAB
S-function

Use the following template to write a new Level-1 MATLAB S-function:
sfuntmpl.m
See “Maintain Level-1 MATLAB S-Functions” on page 3-14 for more
information.

Level-2 MATLAB
S-function 1 Use the msfuntmpl_basic.m template to write a new Level-2 MATLAB

S-function:

See “Write Level-2 MATLAB S-Functions” on page 3-4 for more
information.

2 Write a Target Language Compiler (TLC) file for the S-function if you
need to generate code for a model containing the S-function. The file,
msfcn_times_two.tlc in the folder is an example TLC file for the
S-function msfcn_times_two.m. See “Inline MATLAB File S-Functions”
for information on writing TLC files for Level-2 MATLAB S-functions.

2-5

2 Selecting an S-Function Implementation

S-Function Type Implementation

Hand-written C
MEX S-function 1 Use the sfuntmpl_doc.c template to write a new C MEX S-function

(see “Basic C MEX S-Function” on page 4-36) or to write a wrapper
S-function that calls C, C++, or Fortran code.

For information on writing wrapper S-functions to incorporate legacy
C or C++ code, see “Write Wrapper S-Functions”. For information on
writing a wrapper function to incorporate legacy Fortran code, see
“Constructing the Gateway” on page 6-13.

2 Compile the S-function using the mex command to obtain an executable
to use during simulation.

3 Write a TLC file for the S-function if you want to inline the code during
code generation (see “Write Fully Inlined S-Functions with mdlRTW
Routine” and “Introduction to the Target Language Compiler”). You
do not need a TLC file if you are not inlining the S-function in the
generated code.

S-Function Builder
1 Enter the S-function attributes into the S-Function Builder dialog box
(see “S-Function Builder Dialog Box” on page 4-12).

2 Select the Generate wrapper TLC option to generate a TLC file to
inline the S-function during code generation.

3 Click Build to generate the S-function, TLC file, and an executable file
to use during simulation.

Legacy Code Tool Use the legacy_code function to perform the following steps (see
“Integrate C Functions Using Legacy Code Tool” on page 4-48):

1 Initialize a data structure that describes the S-function attributes in
terms of the legacy function.

lct_spec = legacy_code('initialize');

2 Generate and compile the wrapper S-function.

legacy_code('sfcn_cmex_generate', lct_spec);

2-6

Implement S-Functions

S-Function Type Implementation

legacy_code('compile', lct_spec);

3 Instantiate an S-Function block that calls the S-function wrapper.

legacy_code('slblock_generate', lct_spec);

4 Generate a TLC file to inline the S-function during code generation.

legacy_code('sfcn_tlc_generate', lct_spec);

2-7

2 Selecting an S-Function Implementation

S-Function Features
The following tables give overviews of the features supported by different
types of S-functions. The first table focuses on handwritten S-functions. The
second table compares the features of S-functions automatically generated by
the S-Function Builder or Legacy Code Tool.

Features of Hand-Written S-Functions

Feature Level-1 MATLAB
S-Function

Level-2 MATLAB
S-Function

Handwritten C MEX
S-Function

Data types Supports signals with a
data type of double.

Supports any data type
supported by Simulink
software, including
fixed-point types.

Supports any data type
supported by Simulink
software, including
fixed-point types.

Numeric
types

Supports only real signals. Supports real and
complex signals.

Supports real and complex
signals.

Frame
support

Does not support
frame-based signals.

Supports framed and
unframed signals.

Supports framed and
unframed signals.

Port
dimensions

Supports vector inputs
and outputs. Does not
support multiple input
and output ports.

Supports scalar, 1-D,
and multidimensional
input and output
signals.

Supports scalar, 1-D, and
multidimensional input
and output signals.

S-function
API

Supports only
mdlInitializeSizes,
mdlDerivatives,
mdlUpdate, mdlOutputs,
mdlGetTimeOfNextVarHit,
and mdlTerminate.

Supports a larger set
of the S-function API.
See “Level-2 MATLAB
S-Function Callback
Methods” on page 3-6
for a list of supported
methods.

Supports the entire
S-function API.

Code
generation
support

Does not support code
generation.

Requires a handwritten
TLC file to generate
code.

Natively supports code
generation. Requires a
handwritten TLC file
to inline the S-function
during code generation.

2-8

S-Function Features

Features of Hand-Written S-Functions (Continued)

Feature Level-1 MATLAB
S-Function

Level-2 MATLAB
S-Function

Handwritten C MEX
S-Function

Simulink
Accelerator
mode

Runs interpretively
and is, therefore, not
accelerated.

Provides the option
to use a TLC file in
Accelerator mode,
instead of running
interpretively.

Provides the option to
use a TLC or MEX file in
Accelerator mode.

Model
reference

Cannot be used in a
referenced model.

Supports Normal and
Accelerator mode
simulations when used
in a referenced model.
Requires a TLC file for
Accelerator mode.

Provides options for
sample time inheritance
and Normal mode support
when used in a referenced
model. See “Model
Referencing Limitations”

Simulink.
AliasType
and
Simulink.
NumericType
support

Does not support these
classes.

Supports
Simulink.NumericType
and
Simulink.AliasType
classes (see “Custom
Data Types” on page
8-28).

Supports all of these
classes (see “Custom Data
Types” on page 8-28).

Bus input
and output
signals

Does not support bus
input or output signals.

Does not support bus
input or output signals.

Supports nonvirtual bus
input or output signals.

Tunable and
run-time
parameters

Supports tunable
parameters during
simulation. Does
not support run-time
parameters.

Supports tunable and
run-time parameters.

Supports tunable and
run-time parameters.

Work
vectors

Does not support work
vectors.

Supports DWork vectors
(see “Using DWork
Vectors in Level-2
MATLAB S-Functions”
on page 7-12).

Supports all work vector
types (see “Types of DWork
Vectors” on page 7-5).

2-9

2 Selecting an S-Function Implementation

Features of Automatically Generated S-Functions

Feature S-Function Builder Legacy Code Tool

Data types Supports any data type supported
by Simulink software, including
fixed-point types.

Supports all built-in data types.
To use a fixed-point data type,
you must specify the data type as
a Simulink.NumericType. You
cannot use a fixed-point type
with unspecified scaling.

Numeric types Supports real and complex
signals.

Supports complex signals only
for built-in data types.

Frame support Supports framed and unframed
signals.

Does not support frame-based
signals.

Port dimensions Supports scalar, 1-D, and
multidimensional input and
output signals.

Supports scalar, 1-D, and
multidimensional input and
output signals.

S-function API Supports creation of custom
mdlInitializeSizes,
mdlInitializeSampleTimes,
mdlDerivatives, mdlUpdate,
and mdlOutputs. Also allows
for automatic generation of
mdlStart and mdlTerminate.

Supports mdlInitializeSizes,
mdlInitializeSampleTimes,
mdlStart,
mdlInitializeConditions,
mdlOutputs, and mdlTerminate.

Code generation support Natively supports code
generation. Also, automatically
generates a TLC file for inlining
the S-function during code
generation.

Natively supports code
generation optimized for
embedded systems. Also,
automatically generates a TLC
file that supports expression
folding for inlining the S-function
during code generation.

Simulink Accelerator™
mode

Uses a TLC file in Accelerator
mode, if the file was generated.
Otherwise, uses the MEX file.

Provides the option to use a TLC
or MEX file in Accelerator mode.

Model reference Uses default behaviors when
used in a referenced model.

Uses default behaviors when
used in a referenced model.

2-10

S-Function Features

Features of Automatically Generated S-Functions (Continued)

Feature S-Function Builder Legacy Code Tool

Simulink.AliasType and
Simulink.NumericType

Does not support these classes. Supports Simulink.AliasType
and Simulink.NumericType.

Bus input and output
signals

Supports bus input and output
signals. See sfbuilder_bususage
for an example.

Supports bus input and output
signals. You must define a
Simulink.Bus object in the
MATLAB workspace that is
equivalent to the structure of
the input or output used in the
legacy code. Does not support
bus parameters.

Tunable and run-time
parameters

Supports tunable parameters
only during simulation. Supports
run-time parameters.

Supports tunable and run-time
parameters.

Work vectors Does not provide access to work
vectors.

Supports DWork vectors
with the usage type
SS_DWORK_USED_AS_DWORK.
See “Types of DWork Vectors” on
page 7-5 for a discussion on the
different DWork vector usage
types.

2-11

2 Selecting an S-Function Implementation

S-Function Limitations
The following table summarizes the major limitations of the different types of
S-functions.

Implementation Limitations

Level-1 MATLAB
S-function

Does not support the majority of S-function features. See the
“S-Function Features” on page 2-8 section for information on what
features a Level-1 MATLAB S-function does support.

Level-2 MATLAB
S-functions

• Does not support bus input and output signals.

• Cannot incorporate legacy code during simulation, only during code
generation through a TLC file.

Handwritten C MEX
S-function

Supports model referencing with some limitations. See “S-Functions
with Model Referencing” and S-Function Limitations in “Model
Referencing Limitations”.

S-Function Builder • Generates S-function code using a wrapper function which incurs
additional overhead.

• Does not support the following S-function features:

- Work vectors

- Port-based sample times

- Multiple sample times or a nonzero offset time

- Dynamically-sized input and output signals for an S-function
with multiple input and output ports

Note S-functions with one input and one output port can have
dynamically-sized signals

Legacy Code Tool • Generates C MEX S-functions for existing functions written in C or
C++ only. The tool does not support transformation of MATLAB or
Fortran functions.

• Can interface with C++ functions, but not C++ objects.

• Does not support simulating continuous or discrete states.

2-12

S-Function Limitations

Implementation Limitations

• Does not support use of function pointers as the output of the legacy
function being called.

• Always sets the S-function’s flag for direct feedthrough
(sizes.DirFeedthrough) to true.

• Supports only the continuous, but fixed in minor time step, sample
time and offset option.

• Supports complex numbers, but only with Simulink built-in data
types.

• Does not support the following S-function features:

- Work vectors, other then general DWork vectors

- Frame-based input and output signals

- Port-based sample times

- Multiple block-based sample times

2-13

2 Selecting an S-Function Implementation

S-Functions Incorporate Legacy C Code

In this section...

“Overview” on page 2-14

“Using a Hand-Written S-Function to Incorporate Legacy Code” on page
2-15

“Using the S-Function Builder to Incorporate Legacy Code” on page 2-17

“Using the Legacy Code Tool to Incorporate Legacy Code” on page 2-22

Overview
C MEX S-functions allow you to call existing C code within your Simulink
models. For example, consider the simple C function doubleIt.c that outputs
a value two times the value of the function input.

double doubleIt(double u)
{

return(u * 2.0);
}

You can create an S-function that calls doubleIt.c by either:

• Writing a wrapper S-function. Using this method, you hand write a new
C S-function and associated TLC file. This method requires the most
knowledge about the structure of a C S-function.

• Using an S-Function Builder block. Using this method, you enter the
characteristics of the S-function into a block dialog. This method does
not require any knowledge about writing S-functions. However, a basic
understanding of the structure of an S-function can make the S-Function
Builder dialog box easier to use.

• Using the Legacy Code Tool. Using this command line method, you define
the characteristics of your S-function in a data structure in the MATLAB
workspace. This method requires the least amount of knowledge about
S-functions.

The following sections describe how to create S-functions for use in a Simulink
simulation and with Simulink Coder code generation, using the previous three

2-14

S-Functions Incorporate Legacy C Code

methods. The model sfcndemo_choosing_sfun contains blocks that use these
S-functions. Copy this model and the files doubleIt.c and doubleIt.h from
the folder docroot/toolbox/simulink/sfg/examples into your working
folder if you plan to step through the examples.

Using a Hand-Written S-Function to Incorporate
Legacy Code
The S-function wrapsfcn.c calls the legacy function doubleIt.c in its
mdlOutputs method. Save the wrapsfcn.c file into your working folder, if
you are planning to compile the S-function to run in the example model
sfcndemo_choosing_sfun.

2-15

2 Selecting an S-Function Implementation

To incorporate the legacy code into the S-function, wrapsfcn.c begins by
declaring doubleIt.c with the following line:

extern real_T doubleIt(real_T u);

Once declared, the S-function can use doubleIt.c in its mdlOutputs method.
For example:

/* Function: mdlOutputs =======================================

* Abstract:

* Calls the doubleIt.c function to multiple the input by 2.

*/

static void mdlOutputs(SimStruct *S, int tid){

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

real_T *y = ssGetOutputPortRealSignal(S,0);

*y = doubleIt(*uPtrs[0]);

}

To compile the wrapsfcn.c S-function, run the following mex command. Make
sure that the doubleIt.c file is in your working folder.

mex wrapsfcn.c doubleIt.c

To generate code for the S-function using the Simulink Coder code generator,
you need to write a Target Language Compiler (TLC) file. The following TLC
file wrapsfcn.tlc uses the BlockTypeSetup function to declare a function
prototype for doubleIt.c. The TLC file’s Outputs function then tells the
Simulink Coder code generator how to inline the call to doubleIt.c. For
example:

%implements "wrapsfcn" "C"

%% File : wrapsfcn.tlc

%% Abstract:

%% Example tlc file for S-function wrapsfcn.c

%%

%% Function: BlockTypeSetup ================================

%% Abstract:

%% Create function prototype in model.h as:

%% "extern double doubleIt(double u);"

2-16

S-Functions Incorporate Legacy C Code

%%

%function BlockTypeSetup(block, system) void

%openfile buffer

%% PROVIDE ONE LINE OF CODE AS A FUNCTION PROTOTYPE

extern double doubleIt(double u);

%closefile buffer

%<LibCacheFunctionPrototype(buffer)>

%%endfunction %% BlockTypeSetup

%% Function: Outputs =======================================

%% Abstract:

%% CALL LEGACY FUNCTION: y = doubleIt(u);

%%

%function Outputs(block, system) Output

/* %<Type> Block: %<Name> */

%assign u = LibBlockInputSignal(0, "", "", 0)

%assign y = LibBlockOutputSignal(0, "", "", 0)

%% PROVIDE THE CALLING STATEMENT FOR "doubleIt"

%<y> = doubleIt(%<u>);

%endfunction %% Outputs

For more information on the TLC, see “Introduction to the Target Language
Compiler”.

Using the S-Function Builder to Incorporate Legacy
Code
The S-Function Builder automates the creation of S-functions and TLC files
that incorporate legacy code. For this example, in addition to doubleIt.c,
you need the header file doubleIt.h that declares the doubleIt.c function
format, as follows:

2-17

2 Selecting an S-Function Implementation

extern real_T doubleIt(real_T in1);

The S-Function Builder block in sfcndemo_choosing_sfun shows how to
configure the block dialog to call the legacy function doubleIt.c. In the
S-Function Builder block dialog:

• The S-function name field in the Parameters pane defines the name
builder_wrapsfcn for the generated S-function.

• The Data Properties pane names the input and output ports as in1 and
out1, respectively.

• The Libraries pane provides the interface to the legacy code.

- The Library/Object/Source files field contains the source file name
doubleIt.c.

- The Includes field contains the following line to include the header file
that declares the legacy function:

#include <doubleIt.h>

• The Outputs pane calls the legacy function with the lines:

/* Call function that multiplies the input by 2 */

*out1 = doubleIt(*in1);

• The Build Info pane selects the Generate wrapper TLC option.

When you click Build, the S-Function Builder generates three files.

File Name Description

builder_wrapsfcn.c The main S-function.

builder_wrapsfcn_wrapper.c A wrapper file containing separate
functions for the code entered in the
Outputs, Continuous Derivatives,
and Discrete Updates panes of the
S-Function Builder.

builder_wrapsfcn.tlc The S-function’s TLC file.

2-18

S-Functions Incorporate Legacy C Code

The builder_wrapsfcn.c file follows a standard format:

• The file begins with a set of #define statements that incorporate the
information from the S-Function Builder. For example, the following lines
define the first input port:

#define NUM_INPUTS 1

/* Input Port 0 */

#define IN_PORT_0_NAME in1

#define INPUT_0_WIDTH 1

#define INPUT_DIMS_0_COL 1

#define INPUT_0_DTYPE real_T

#define INPUT_0_COMPLEX COMPLEX_NO

#define IN_0_FRAME_BASED FRAME_NO

#define IN_0_DIMS 1-D

#define INPUT_0_FEEDTHROUGH 1

• Next, the file declares all the wrapper functions found in the
builder_wrapsfcn_wrapper.c file. This example requires only a wrapper
function for the Outputs code.

extern void builder_wrapsfcn_Outputs_wrapper(const real_T *in1,

real_T *out1);

• Following these definitions and declarations, the file contains the
S-function methods, such as mdlInitializeSizes, that initialize the
S-function’s input ports, output ports, and parameters. See “Process View”
on page 4-69 for a list of methods that are called during the S-function
initialization phase.

• The file mdlOutputs method calls the builder_wrapsfcn_wrapper.c
function. The method uses the input and output names in1 and out1, as
defined in the Data Properties pane, when calling the wrapper function.
For example:

/* Function: mdlOutputs ===

*

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

const real_T *in1 = (const real_T*) ssGetInputPortSignal(S,0);

2-19

2 Selecting an S-Function Implementation

real_T *out1 = (real_T *)ssGetOutputPortRealSignal(S,0);

builder_wrapsfcn_Outputs_wrapper(in1, out1);

}

• The file builder_wrapsfcn.c concludes with the required mdlTerminate
method.

The wrapper function builder_wrapsfcn_wrapper.c has three parts:

• The Include Files section includes the doubleIt.h file, along with the
standard S-function header files:

/*

* Include Files

*

*/

#if defined(MATLAB_MEX_FILE)

#include "tmwtypes.h"

#include "simstruc_types.h"

#else

#include "rtwtypes.h"

#endif

/* %%%-SFUNWIZ_wrapper_includes_Changes_BEGIN --- EDIT HERE TO _END */

#include <math.h>

#include <doubleIt.h>

/* %%%-SFUNWIZ_wrapper_includes_Changes_END --- EDIT HERE TO _BEGIN */

• The External References section contains information from the External
reference declarations field on the Libraries pane. This example does
not use this section.

• The Output functions section declares the function
builder_wrapfcn_Outputs_wrapper, which contains the code
entered in the S-Function Builder block dialog’s Outputs pane:

/*

* Output functions

*

*/

void builder_wrapfcn_Outputs_wrapper(const real_T *in1,

2-20

S-Functions Incorporate Legacy C Code

real_T *out1)

{

/* %%%-SFUNWIZ_wrapper_Outputs_Changes_BEGIN --- EDIT HERE TO _END */

/* Call function that multiplies the input by 2 */

*out1 = doubleIt(*in1);

/* %%%-SFUNWIZ_wrapper_Outputs_Changes_END --- EDIT HERE TO _BEGIN */

}

Note Compared to a handwritten S-function, the S-Function Builder places
the call to the legacy C function down an additional level through the wrapper
file builder_wrapsfcn_wrapper.c.

The TLC file builder_wrapsfcn.tlc generated by the S-Function Builder
is similar to the previous handwritten version. The file declares the legacy
function in BlockTypeSetup and calls it in the Outputs method.

%implements builder_wrapsfcn "C"

%% Function: BlockTypeSetup ====================================

%%

%% Purpose:

%% Set up external references for wrapper functions in the

%% generated code.

%%

%function BlockTypeSetup(block, system) Output

%openfile externs

extern void builder_wrapsfcn_Outputs_wrapper(const real_T *in1,

real_T *out1);

%closefile externs

%<LibCacheExtern(externs)>

%%

%endfunction

%% Function: Outputs ===

%%

%% Purpose:

%% Code generation rules for mdlOutputs function.

2-21

2 Selecting an S-Function Implementation

%%

%function Outputs(block, system) Output

/* S-Function "builder_wrapsfcn_wrapper" Block: %<Name> */

%assign pu0 = LibBlockInputSignalAddr(0, "", "", 0)

%assign py0 = LibBlockOutputSignalAddr(0, "", "", 0)

%assign py_width = LibBlockOutputSignalWidth(0)

%assign pu_width = LibBlockInputSignalWidth(0)

builder_wrapsfcn_Outputs_wrapper(%<pu0>, %<py0>);

%%

%endfunction

Using the Legacy Code Tool to Incorporate Legacy
Code
The section “Example of Integrating Existing C Functions into Simulink
Models with the Legacy Code Tool” on page 4-51 in “Writing S-Functions
in C” shows how to use the Legacy Code Tool to create an S-function that
incorporates doubleIt.c. For a script that performs the steps in that
example, copy the file lct_wrapsfcn.m to your working folder. Make sure
that the doubleIt.c and doubleIt.h files are in your working folder then run
the script by typing lct_wrapsfcn at the MATLAB command prompt. The
script creates and compiles the S-function legacy_wrapsfcn.c and creates
the TLC file legacy_wrapsfcn.tlc via the following commands.

% Create the data structure

def = legacy_code('initialize');

% Populate the data struture

def.SourceFiles = {'doubleIt.c'};

def.HeaderFiles = {'doubleIt.h'};

def.SFunctionName = 'legacy_wrapsfcn';

def.OutputFcnSpec = 'double y1 = doubleIt(double u1)';

def.SampleTime = [-1,0];

% Generate the S-function

legacy_code('sfcn_cmex_generate', def);

% Compile the MEX-file

legacy_code('compile', def);

2-22

S-Functions Incorporate Legacy C Code

% Generate a TLC-file

legacy_code('sfcn_tlc_generate', def);

The S-function legacy_wrapsfcn.c generated by the Legacy Code Tool
begins by including the doubleIt.h header file. The mdlOutputs method then
directly calls the doubleIt.c function, as follows:

static void mdlOutputs(SimStruct *S, int_T tid)

{

/*

* Get access to Parameter/Input/Output/DWork/size information

*/

real_T *u1 = (real_T *) ssGetInputPortSignal(S, 0);

real_T *y1 = (real_T *) ssGetOutputPortSignal(S, 0);

/*

* Call the legacy code function

*/

*y1 = doubleIt(*u1);

}

The S-function generated by the Legacy Code Tool differs from the S-function
generated by the S-Function Builder as follows:

• The S-function generated by the S-Function Builder calls the legacy function
doubleIt.c through the wrapper function builder_wrapsfcn_wrapper.c.
The S-function generated by the Legacy Code Tool directly calls doubleIt.c
from its mdlOutputs method.

• The S-Function Builder uses the input and output names entered into
the Data Properties pane, allowing you to customize these names in the
S-function. The Legacy Code Tool uses the default names y and u for the
outputs and inputs, respectively. You cannot specify customized names to
use in the generated S-function when using the Legacy Code Tool.

• The S-Function Builder and Legacy Code Tool both specify an inherited
sample time, by default. However, the S-Function Builder uses an offset
time of 0.0 while the Legacy Code Tool specifies that the offset time is
fixed in minor time steps.

2-23

2 Selecting an S-Function Implementation

The TLC file legacy_wrapsfcn.tlc supports expression folding by defining
BlockInstanceSetup and BlockOutputSignal functions. The TLC file
also contains a BlockTypeSetup function to declare a function prototype
for doubleIt.c and an Outputs function to tell the Simulink Coder code
generator how to inline the call to doubleIt.c.:

%% Function: BlockTypeSetup ===

%%

%function BlockTypeSetup(block, system) void

%%

%% The Target Language must be C

%if ::GenCPP==1

%<LibReportFatalError("This S-Function generated by the Legacy Code Tool

must be only used with the C Target Language")>

%endif

%<LibAddToCommonIncludes("doubleIt.h")>

%<LibAddToModelSources("doubleIt")>

%%

%endfunction

%% Function: BlockInstanceSetup ===

%%

%function BlockInstanceSetup(block, system) void

%%

%<LibBlockSetIsExpressionCompliant(block)>

%%

%endfunction

%% Function: Outputs ==

%%

%function Outputs(block, system) Output

%%

%if !LibBlockOutputSignalIsExpr(0)

%assign u1_val = LibBlockInputSignal(0, "", "", 0)

%assign y1_val = LibBlockOutputSignal(0, "", "", 0)

%%

%<y1_val = doubleIt(%<u1_val>);

%endif

%%

%endfunction

2-24

S-Functions Incorporate Legacy C Code

%% Function: BlockOutputSignal ==

%%

%function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void

%%

%assign u1_val = LibBlockInputSignal(0, "", "", 0)

%assign y1_val = LibBlockOutputSignal(0, "", "", 0)

%%

%switch retType

%case "Signal"

%if portIdx == 0

%return "doubleIt(%<u1_val>)"

%else

%assign errTxt = "Block output port index not supported: %<portIdx>"

%endif

%default

%assign errTxt = "Unsupported return type: %<retType>"

%<LibBlockReportError(block,errTxt)>

%endswitch

2-25

2 Selecting an S-Function Implementation

2-26

3

Writing S-Functions in
MATLAB

• “Introduction” on page 3-2

• “Write Level-2 MATLAB S-Functions” on page 3-4

• “Maintain Level-1 MATLAB S-Functions” on page 3-14

3 Writing S-Functions in MATLAB

Introduction
You can create custom blocks whose properties and behaviors are defined
by MATLAB functions called MATLAB S-functions. The Level-2 MATLAB
S-function application programming interface (API) allows you to create
blocks that have many of the features and capabilities of Simulink built-in
blocks, including:

• Multiple input and output ports

• 1-D, 2-D, and n-D input and output signals

• All data types supported by the Simulink software

• Real or complex signals

• Frame-based signals

• Multiple sample rates

• User-defined data and work vectors

• Tunable and run-time parameters

Note Level-2 MATLAB S-functions do not support zero-crossing detection.

For information on how to write a Level-2 MATLAB S-functions, see “Write
Level-2 MATLAB S-Functions” on page 3-4.

If you have Simulink Coder, you can generate code for Level-2 MATLAB
S-functions if they are inlined. For more information, see “Inlining
S-Functions”.

3-2

Introduction

Note This version of the Simulink software also supports a predecessor
API known as the Level-1 MATLAB S-function. This ensures that you can
simulate models developed with earlier releases that use Level-1 MATLAB
S-functions in their S-Function blocks (see “Maintain Level-1 MATLAB
S-Functions” on page 3-14). Level-1 MATLAB S-functions support a much
smaller subset of the S-function API then Level-2 MATLAB S-functions, and
their features are limited compared to built-in blocks. Use the Level-2 API,
not the Level-1 API, to develop new MATLAB S-functions.

3-3

3 Writing S-Functions in MATLAB

Write Level-2 MATLAB S-Functions

In this section...

“About Level-2 MATLAB S-Functions” on page 3-4

“About Run-Time Objects” on page 3-5

“Level-2 MATLAB S-Function Template” on page 3-5

“Level-2 MATLAB S-Function Callback Methods” on page 3-6

“Using the setup Method” on page 3-8

“Example of Writing a Level-2 MATLAB S-Function” on page 3-8

“Instantiating a Level-2 MATLAB S-Function” on page 3-12

“Operations for Variable-Size Signals” on page 3-12

“Generating Code from a Level-2 MATLAB S-Function” on page 3-13

“MATLAB S-Function Examples” on page 3-13

About Level-2 MATLAB S-Functions
The Level-2 MATLAB S-function API allows you to use the MATLAB
language to create custom blocks with multiple input and output ports
and capable of handling any type of signal produced by a Simulink model,
including matrix and frame signals of any data type. The Level-2 MATLAB
S-function API corresponds closely to the API for creating C MEX S-functions.
Much of the documentation for creating C MEX S-functions applies also to
Level-2 MATLAB S-functions. To avoid duplication, this section focuses on
providing information that is specific to writing Level-2 MATLAB S-functions.

A Level-2 MATLAB S-function is MATLAB function that defines the
properties and behavior of an instance of a Level-2 MATLAB S-Function block
that references the MATLAB function in a Simulink model. The MATLAB
function itself comprises a set of callback methods (see “Level-2 MATLAB
S-Function Callback Methods” on page 3-6) that the Simulink engine invokes
when updating or simulating the model. The callback methods perform the
actual work of initializing and computing the outputs of the block defined
by the S-function.

3-4

Write Level-2 MATLAB S-Functions

To facilitate these tasks, the engine passes a run-time object to the callback
methods as an argument. The run-time object effectively serves as a MATLAB
proxy for the S-Function block, allowing the callback methods to set and
access the block properties during simulation or model updating.

About Run-Time Objects
When the Simulink engine invokes a Level-2 MATLAB S-function callback
method, it passes an instance of the Simulink.MSFcnRunTimeBlock class to
the method as an argument. This instance, known as the run-time object
for the S-Function block, serves the same purpose for Level-2 MATLAB
S-function callback methods as the SimStruct structure serves for C MEX
S-function callback methods. The object enables the method to provide and
obtain information about various elements of the block ports, parameters,
states, and work vectors. The method does this by getting or setting properties
or invoking methods of the block run-time object. See the documentation
for the Simulink.MSFcnRunTimeBlock class for information on getting and
setting run-time object properties and invoking run-time object methods.

Run-time objects do not support MATLAB sparse matrices. For example,
if the variable block is a run-time object, the following line in a Level-2
MATLAB S-function produces an error:

block.Outport(1).Data = speye(10);

where the speye command forms a sparse identity matrix.

Note Other MATLAB programs besides MATLAB S-functions can use
run-time objects to obtain information about a MATLAB S-function in a model
that is simulating. See “Access Block Data During Simulation” in Using
Simulink for more information.

Level-2 MATLAB S-Function Template
Use the basic Level-2 MATLAB S-function template msfuntmpl_basic.m
to get a head start on creating a new Level-2 MATLAB S-function. The
template contains skeleton implementations of the required callback methods
defined by the Level-2 MATLAB S-function API. To write a more complicated
S-function, use the annotated template msfuntmpl.m.

3-5

3 Writing S-Functions in MATLAB

To create a MATLAB S-function, make a copy of the template and edit the
copy as necessary to reflect the desired behavior of the S-function you are
creating. The following two sections describe the contents of the MATLAB
code template. The section “Example of Writing a Level-2 MATLAB
S-Function” on page 3-8 describes how to write a Level-2 MATLAB S-function
that models a unit delay.

Level-2 MATLAB S-Function Callback Methods
The Level-2 MATLAB S-function API defines the signatures and general
purposes of the callback methods that constitute a Level-2 MATLAB
S-function. The S-function itself provides the implementations of these
callback methods. The implementations in turn determine the block
attributes (e.g., ports, parameters, and states) and behavior (e.g., the block
outputs as a function of time and the block inputs, states, and parameters). By
creating an S-function with an appropriate set of callback methods, you can
define a block type that meets the specific requirements of your application.

A Level-2 MATLAB S-function must include the following callback methods:

• A setup function to initialize the basic S-function characteristics

• An Outputs function to calculate the S-function outputs

Your S-function can contain other methods, depending on the requirements
of the block that the S-function defines. The methods defined by the Level-2
MATLAB S-function API generally correspond to similarly named methods
defined by the C MEX S-function API. For information on when these methods
are called during simulation, see “Process View” on page 4-69 in “Simulink
Engine Interaction with C S-Functions” on page 4-69. For instructions on how
to implement each callback method, see “Write Callback Methods” on page
4-82.

The following table lists all the Level-2 MATLAB S-function callback methods
and their C MEX counterparts.

3-6

Write Level-2 MATLAB S-Functions

Level-2 MATLAB Method Equivalent C MEX Method

setup (see “Using the setup
Method” on page 3-8)

mdlInitializeSizes

CheckParameters mdlCheckParameters

Derivatives mdlDerivatives

Disable mdlDisable

Enable mdlEnable

InitializeConditions mdlInitializeConditions

Outputs mdlOutputs

PostPropagationSetup mdlSetWorkWidths

ProcessParameters mdlProcessParameters

Projection mdlProjection

SetInputPortComplexSignal mdlSetInputPortComplexSignal

SetInputPortDataType mdlSetInputPortDataType

SetInputPortDimensions mdlSetInputPortDimensionInfo

SetInputPortDimensionsModeFcn mdlSetInputPortDimensionsModeFcn

SetInputPortSampleTime mdlSetInputPortSampleTime

SetInputPortSamplingMode mdlSetInputPortFrameData

SetOutputPortComplexSignal mdlSetOutputPortComplexSignal

SetOutputPortDataType mdlSetOutputPortDataType

SetOutputPortDimensions mdlSetOutputPortDimensionInfo

SetOutputPortSampleTime mdlSetOutputPortSampleTime

SimStatusChange mdlSimStatusChange

Start mdlStart

Terminate mdlTerminate

Update mdlUpdate

WriteRTW mdlRTW

3-7

3 Writing S-Functions in MATLAB

Using the setup Method
The body of the setup method in a Level-2 MATLAB S-function initializes
the instance of the corresponding Level-2 MATLAB S-Function block. In
this respect, the setup method is similar to the mdlInitializeSizes and
mdlInitializeSampleTimes callback methods implemented by C MEX
S-functions. The setup method performs the following tasks:

• Initializing the number of input and output ports of the block.

• Setting attributes such as dimensions, data types, complexity, and sample
times for these ports.

• Specifying the block sample time. See “Specify Sample Time” in Using
Simulink for more information on how to specify valid sample times.

• Setting the number of S-function dialog parameters.

• Registering S-function callback methods by passing the handles of local
functions in the MATLAB S-function to the RegBlockMethod method
of the S-Function block’s run-time object. See the documentation
for Simulink.MSFcnRunTimeBlock for information on using the
RegBlockMethod method.

Example of Writing a Level-2 MATLAB S-Function
The following steps illustrate how to write a simple Level-2 MATLAB
S-function. When applicable, the steps include examples from the S-function
example msfcn_unit_delay.m used in the model msfcndemo_sfundsc2. All
lines of code use the variable name block for the S-function run-time object.

1 Copy the Level-2 MATLAB S-function template msfuntmpl_basic.m to
your working folder. If you change the file name when you copy the file,
change the function name in the function line to the same name.

2 Modify the setup method to initialize the S-function’s attributes. For this
example:

• Set the run-time object’s NumInputPorts and NumOutputPorts properties
to 1 in order to initialize one input port and one output port.

• Invoke the run-time object’s SetPreCompInpPortInfoToDynamic and
SetPreCompOutPortInfoToDynamic methods to indicate that the

3-8

Write Level-2 MATLAB S-Functions

input and output ports inherit their compiled properties (dimensions,
data type, complexity, and sampling mode) from the model.

• Set the DirectFeedthrough property of the run-time object’s InputPort
to false in order to indicate the input port does not have direct
feedthrough. Retain the default values for all other input and output
port properties that are set in your copy of the template file. The values
set for the Dimensions, DatatypeID, and Complexity properties override
the values inherited using the SetPreCompInpPortInfoToDynamic and
SetPreCompOutPortInfoToDynamic methods.

• Set the run-time object’s NumDialogPrms property to 1 in order to
initialize one S-function dialog parameter.

• Specify that the S-function has an inherited sample time by setting the
value of the runtime object’s SampleTimes property to [-1 0].

• Call the run-time object’s RegBlockMethod method to register the
following four callback methods used in this S-function.

– PostPropagationSetup

– InitializeConditions

– Outputs

– Update
Remove any other registered callback methods from your copy of the
template file. In the calls to RegBlockMethod, the first input argument is
the name of the S-function API method and the second input argument
is the function handle to the associated local function in the MATLAB
S-function.

The following setup method from msfcn_unit_delay.m performs the
previous list of steps:

function setup(block)

%% Register a single dialog parameter
block.NumDialogPrms = 1;

%% Register number of input and output ports
block.NumInputPorts = 1;
block.NumOutputPorts = 1;

3-9

3 Writing S-Functions in MATLAB

%% Setup functional port properties to dynamically
%% inherited.
block.SetPreCompInpPortInfoToDynamic;
block.SetPreCompOutPortInfoToDynamic;

%% Hard-code certain port properties
block.InputPort(1).Dimensions = 1;
block.InputPort(1).DirectFeedthrough = false;

block.OutputPort(1).Dimensions = 1;

%% Set block sample time to [0.1 0]
block.SampleTimes = [0.1 0];

%% Register methods
block.RegBlockMethod('PostPropagationSetup',@DoPostPropSetup);
block.RegBlockMethod('InitializeConditions',@InitConditions);
block.RegBlockMethod('Outputs', @Output);
block.RegBlockMethod('Update', @Update);

If your S-function needs continuous states, initialize the number of
continuous states in the setup method using the run-time object’s
NumContStates property. Do not initialize discrete states in the setup
method.

3 Initialize the discrete states in the PostPropagationSetup method. A
Level-2 MATLAB S-function stores discrete state information in a DWork
vector. The default PostPropagationSetup method in the template file
suffices for this example.

The following PostPropagationSetup method from msfcn_unit_delay.m,
named DoPostPropSetup, initializes one DWork vector with the name x0.

function DoPostPropSetup(block)

%% Setup Dwork
block.NumDworks = 1;
block.Dwork(1).Name = 'x0';
block.Dwork(1).Dimensions = 1;
block.Dwork(1).DatatypeID = 0;

3-10

Write Level-2 MATLAB S-Functions

block.Dwork(1).Complexity = 'Real';
block.Dwork(1).UsedAsDiscState = true;

If your S-function uses additional DWork vectors, initialize them in the
PostPropagationSetup method, as well (see “Using DWork Vectors in
Level-2 MATLAB S-Functions” on page 7-12).

4 Initialize the values of discrete and continuous states or other DWork
vectors in the InitializeConditions or Start callback methods. Use the
Start callback method for values that are initialized once at the beginning
of the simulation. Use the InitializeConditions method for values
that need to be reinitialized whenever an enabled subsystem containing
the S-function is reenabled.

For this example, use the InitializeConditions method to set the
discrete state’s initial condition to the value of the S-function’s dialog
parameter. For example, the InitializeConditions method in
msfcn_unit_delay.m is:

function InitConditions(block)

%% Initialize Dwork
block.Dwork(1).Data = block.DialogPrm(1).Data;

For S-functions with continuous states, use the ContStates run-time object
method to initialize the continuous state date. For example:

block.ContStates.Data(1) = 1.0;

5 Calculate the S-function’s outputs in the Outputs callback method. For
this example, set the output to the current value of the discrete state stored
in the DWork vector.

The Outputs method in msfcn_unit_delay.m is:

function Output(block)

block.OutputPort(1).Data = block.Dwork(1).Data;

6 For an S-function with continuous states, calculate the state derivatives in
the Derivatives callback method. Run-time objects store derivative data

3-11

3 Writing S-Functions in MATLAB

in their Derivatives property. For example, the following line sets the
first state derivative equal to the value of the first input signal.

block.Derivatives(1).Data = block.InputPort(1).Data;

This example does not use continuous states and, therefore, does not
implement the Derivatives callback method.

7 Update any discrete states in the Update callback method. For this
example, set the value of the discrete state to the current value of the first
input signal.

The Update method in msfcn_unit_delay.m is:

function Update(block)

block.Dwork(1).Data = block.InputPort(1).Data;

8 Perform any cleanup, such as clearing variables or memory, in the
Terminate method. Unlike C MEX S-functions, Level-2 MATLAB
S-function are not required to have a Terminate method.

For information on additional callback methods, see “Level-2 MATLAB
S-Function Callback Methods” on page 3-6. For a list of run-time object
properties, see the reference page for Simulink.MSFcnRunTimeBlock and the
parent class Simulink.RunTimeBlock.

Instantiating a Level-2 MATLAB S-Function
To use a Level-2 MATLAB S-function in a model, copy an instance of
the Level-2 MATLAB S-Functionblock into the model. Open the Block
Parameters dialog box for the block and enter the name of the MATLAB file
that implements your S-function into the S-function name field. If your
S-function uses any additional parameters, enter the parameter values as a
comma-separated list in the Block Parameters dialog box Parameters field.

Operations for Variable-Size Signals
Following are modifications to the Level-2 MATLAB S-functions template
(msfuntmpl_basic.m) and additional operations that allow you to use
variable-size signals.

3-12

Write Level-2 MATLAB S-Functions

function setup(block)

% Register the properties of the output port

block.OutputPort(1).DimensionsMode = 'Variable';

block.RegBlockMethod('SetInputPortDimensionsMode', @SetInputDimsMode);

function DoPostPropSetup(block)

%Register dependency rules to update current output size of output port a depending on

%input ports b and c

block.AddOutputDimsDependencyRules(a, [b c], @setOutputVarDims);

%Configure output port b to have the same dimensions as input port a

block.InputPortSameDimsAsOutputPort(a,b);

%Configure DWork a to have its size reset when input size changes.

block.DWorkRequireResetForSignalSize(a,true);

function SetInputDimsMode(block, port, dm)

% Set dimension mode

block.InputPort(port).DimensionsMode = dm;

block.OutputPort(port).DimensionsMode = dm;

function setOutputVarDims(block, opIdx, inputIdx)

% Set current (run-time) dimensions of the output

outDimsAfterReset = block.InputPort(inputIdx(1)).CurrentDimensions;

block.OutputPort(opIdx).CurrentDimensions = outDimsAfterReset;

Generating Code from a Level-2 MATLAB S-Function
Generating code for a model containing a Level-2 MATLAB S-function
requires that you provide a corresponding Target Language Compiler (TLC)
file. You do not need a TLC file to accelerate a model containing a Level-2
MATLAB S-function. The Simulink Accelerator software runs Level-2
MATLAB S-functions in interpreted mode. For more information on writing
TLC files for MATLAB S-functions, see “Inlining S-Functions”.

MATLAB S-Function Examples
The Level-2 MATLAB S-function examples provide a set of self-documenting
models that illustrate the use of Level-2 MATLAB S-functions. Enter
sfundemos at the MATLAB command prompt to view the examples.

3-13

3 Writing S-Functions in MATLAB

Maintain Level-1 MATLAB S-Functions

In this section...

“About the Maintenance of Level-1 MATLAB S-Functions” on page 3-14

“Level-1 MATLAB S-Function Arguments” on page 3-15

“Level-1 MATLAB S-Function Outputs” on page 3-16

“Define S-Function Block Characteristics” on page 3-17

“Processing S-Function Parameters” on page 3-18

“Convert Level-1 MATLAB S-Functions to Level-2” on page 3-18

About the Maintenance of Level-1 MATLAB
S-Functions

Note The information provided in this section is intended only for use in
maintaining existing Level-1 MATLAB S-functions. Use the more capable
Level-2 API to develop new MATLAB S-functions (see “Write Level-2
MATLAB S-Functions” on page 3-4). Level-1 MATLAB S-functions support a
much smaller subset of the S-function API then Level-2 MATLAB S-functions,
and their features are limited compared to built-in blocks.

A Level-1 MATLAB S-function is a MATLAB function of the following form

[sys,x0,str,ts]=f(t,x,u,flag,p1,p2,...)

where f is the name of the S-function. During simulation of a model, the
Simulink engine repeatedly invokes f, using the flag argument to indicate
the task (or tasks) to be performed for a particular invocation. The S-function
performs the task and returns the results in an output vector.

A template implementation of a Level-1 MATLAB S-function, sfuntmpl.m,
resides in matlabroot/toolbox/simulink/blocks. The template consists
of a top-level function and a set of skeleton local functions, called S-function
callback methods, each of which corresponds to a particular value of flag.
The top-level function invokes the local function indicated by flag. The

3-14

Maintain Level-1 MATLAB S-Functions

local functions perform the actual tasks required of the S-function during
simulation.

Level-1 MATLAB S-Function Arguments
The Simulink engine passes the following arguments to a Level-1 MATLAB
S-function:

t Current time

x State vector

u Input vector

flag Integer value that indicates the task to be performed by
the S-function

The following table describes the values that flag can assume and lists the
corresponding Level-2 MATLAB S-function method for each value.

Flag Argument

Level-1
Flag Level-2 Callback Method Description

0 setup Defines basic S-Function
block characteristics,
including sample times,
initial conditions of
continuous and discrete
states, and the sizes array
(see “Define S-Function
Block Characteristics” on
page 3-17 for a description
of the sizes array).

1 mdlDerivatives Calculates the derivatives
of the continuous state
variables.

3-15

3 Writing S-Functions in MATLAB

Flag Argument (Continued)

Level-1
Flag Level-2 Callback Method Description

2 mdlUpdate Updates discrete states,
sample times, and major
time step requirements.

3 mdlOutputs Calculates the outputs of
the S-function.

4 mdlOutputs method updates the
run-time object NextTimeHit
property

Calculates the time of the
next hit in absolute time.
This routine is used only
when you specify a variable
discrete-time sample time
in the setup method.

9 mdlTerminate Performs any necessary
end-of-simulation tasks.

Level-1 MATLAB S-Function Outputs
A Level-1 MATLAB S-function returns an output vector containing the
following elements:

• sys, a generic return argument. The values returned depend on the flag
value. For example, for flag = 3, sys contains the S-function outputs.

• x0, the initial state values (an empty vector if there are no states in the
system). x0 is ignored, except when flag = 0.

• str, originally intended for future use. Level-1 MATLAB S-functions must
set this to the empty matrix, [].

• ts, a two-column matrix containing the sample times and offsets of the
block (see “Specify Sample Time” in Using Simulink for information on how
to specify a sample times and offsets).

For example, if you want your S-function to run at every time step
(continuous sample time), set ts to [0 0]. If you want your S-function
to run at the same rate as the block to which it is connected (inherited

3-16

Maintain Level-1 MATLAB S-Functions

sample time), set ts to [-1 0]. If you want it to run every 0.25 seconds
(discrete sample time) starting at 0.1 seconds after the simulation start
time, set ts to [0.25 0.1].

You can create S-functions that do multiple tasks, each at a different
sample rate (i.e., a multirate S-function). In this case, ts should specify
all the sample rates used by your S-function in ascending order by sample
time. For example, suppose your S-function performs one task every 0.25
second starting from the simulation start time and another task every 1
second starting 0.1 second after the simulation start time. In this case,
your S-function should set ts equal to [.25 0; 1.0 .1]. This will cause
the Simulink engine to execute the S-function at the following times: [0
0.1 0.25 0.5 0.75 1 1.1 ...]. Your S-function must decide at every
sample time which task to perform at that sample time.

You can also create an S-function that performs some tasks continuously
(i.e., at every time step) and others at discrete intervals.

Define S-Function Block Characteristics
For the Simulink engine to recognize a Level-1 MATLAB S-function, you must
provide it with specific information about the S-function. This information
includes the number of inputs, outputs, states, and other block characteristics.

To provide this information, call the simsizes function at the beginning of
the S-function.

sizes = simsizes;

This function returns an uninitialized sizes structure. You must load the
sizes structure with information about the S-function. The table below lists
the fields of the sizes structure and describes the information contained
in each field.

Fields in the sizes Structure

Field Name Description

sizes.NumContStates Number of continuous states

sizes.NumDiscStates Number of discrete states

sizes.NumOutputs Number of outputs

3-17

3 Writing S-Functions in MATLAB

Fields in the sizes Structure (Continued)

Field Name Description

sizes.NumInputs Number of inputs

sizes.DirFeedthrough Flag for direct feedthrough

sizes.NumSampleTimes Number of sample times

After you initialize the sizes structure, call simsizes again:

sys = simsizes(sizes);

This passes the information in the sizes structure to sys, a vector that holds
the information for use by the Simulink engine.

Processing S-Function Parameters
When invoking a Level-1 MATLAB S-function, the Simulink engine always
passes the standard block parameters, t, x, u, and flag, to the S-function as
function arguments. The engine can pass additional block-specific parameters
specified by the user to the S-function. The user specifies the parameters
in the S-function parameters field of the S-Function Block Parameters
dialog box (see “Passing Parameters to S-Functions” on page 1-5). If the block
dialog specifies additional parameters, the engine passes the parameters to
the S-function as additional function arguments. The additional arguments
follow the standard arguments in the S-function argument list in the order
in which the corresponding parameters appear in the block dialog. You can
use this block-specific S-function parameter capability to allow the same
S-function to implement various processing options. See the limintm.m
example in the matlabroot/toolbox/simulink/blocks folder for an example
of an S-function that uses block-specific parameters.

Convert Level-1 MATLAB S-Functions to Level-2
You can convert Level-1 MATLAB S-functions to Level-2 MATLAB S-functions
by mapping the code associated with each Level-1 S-function flag to the
appropriate Level-2 S-function callback method. See the Flag Arguments
table for a mapping of Level-1 flags to Level-2 callback methods. In addition:

3-18

Maintain Level-1 MATLAB S-Functions

• Store discrete state information for Level-2 MATLAB S-functions in DWork
vectors, initialized in the PostPropagationSetup method.

• Access Level-2 MATLAB S-function dialog parameters using the DialogPrm
run-time object property, instead of passing them into the S-function as
function arguments.

• For S-functions with variable sample times, update the NextTimeHit
run-time object property in the Outputs method to set the next sample time
hit for the Level-2 MATLAB S-function.

For example, the following table shows how to convert the Level-1 MATLAB
S-function sfundsc2.m to a Level-2 MATLAB S-function. The example uses
the Level-2 MATLAB S-function template msfuntmpl_basic.m as a starting
point when converting the Level-1 MATLAB S-function. The line numbers in
the table corresponds to the lines of code in sfundsc2.m.

Line
Number

Code in sfundsc2.m Code in Level-2 MATLAB file
(sfundsc2_level2.m)

1
function [sys,x0,str,ts]= ...

sfundsc2(t,x,u,flag)

function sfundsc2(block)

setup(block);

The syntax for the function line changes to
accept one input argument block, which is the
Level-2 MATLAB S-Function block’s run-time
object. The main body of the Level-2 MATLAB
S-function contains a single line that calls the
local setup function.

13 - 19
switch flag,

case 0,

[sys,x0,str,ts] = ...

mdlInitializeSizes;

function setup(block)

The flag value of zero corresponds to calling the
setup method. A Level-2 MATLAB S-function
does not use a switch statement to invoke the
callback methods. Instead, the local setup
function registers callback methods that are
directly called during simulation.

3-19

3 Writing S-Functions in MATLAB

Line
Number

Code in sfundsc2.m Code in Level-2 MATLAB file
(sfundsc2_level2.m)

24 - 31
case 2,

sys = mdlUpdate(t,x,u);

case 3,

sys = mdlOutputs(t,x,u);

The setup function registers two local functions
associated with flag values of 2 and 3.

block.RegBlockMethod('Outputs' ,@Output);

block.RegBlockMethod('Update' ,@Update);

53 - 66
sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = 1;

sizes.NumOutputs = 1;

sizes.NumInputs = 1;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = 0;

str = [];

ts = [.1 0];

The setup function also initializes the attributes
of the Level-2 MATLAB S-function:

block.NumInputPorts = 1;

block.NumOutputPorts = 1;

block.InputPort(1).Dimensions = 1;

block.InputPort(1).DirectFeedthrough = false;

block.OutputPort(1).Dimensions = 1;

block.NumDialogPrms = 0;

block.SampleTimes = [0.1 0];

Because this S-function has discrete
states, the setup method registers the
PostPropagationSetup callback method
to initialize a DWork vector and the
InitializeConditions callback method to set
the initial state value.

block.RegBlockMethod('PostPropagationSetup',...

@DoPostPropSetup);

block.RegBlockMethod('InitializeConditions', ...

@InitConditions);

3-20

Maintain Level-1 MATLAB S-Functions

Line
Number

Code in sfundsc2.m Code in Level-2 MATLAB file
(sfundsc2_level2.m)

56
sizes.NumDiscStates = 1;

The PostPropagationSetup method initializes
the DWork vector that stores the single discrete
state.

function DoPostPropSetup(block)

%% Setup Dwork

block.NumDworks = 1;

block.Dwork(1).Name = 'x0';

block.Dwork(1).Dimensions = 1;

block.Dwork(1).DatatypeID = 0;

block.Dwork(1).Complexity = 'Real';

block.Dwork(1).UsedAsDiscState = true;

64
x0 = 0;

The InitializeConditions method initializes
the discrete state value.

function InitConditions(block)

%% Initialize Dwork

block.Dwork(1).Data = 0

77 - 78
function sys = ...

mdlUpdate(t,x,u)

sys = u;

The Update method calculates the next value of
the discrete state.

function Update(block)

block.Dwork(1).Data = block.InputPort(1).Data;

88 - 89
function sys = ...

mdlOutputs(t,x,u)

sys = x;

The Outputs method calculates the S-function’s
output.

function Output(block)

block.OutputPort(1).Data = block.Dwork(1).Data;

3-21

3 Writing S-Functions in MATLAB

3-22

4

Writing S-Functions in C

• “Introduction” on page 4-2

• “Build S-Functions Automatically” on page 4-5

• “S-Function Builder Dialog Box” on page 4-12

• “Basic C MEX S-Function” on page 4-36

• “Templates for C S-Functions” on page 4-43

• “Integrate C Functions Using Legacy Code Tool” on page 4-48

• “Simulink Engine Interaction with C S-Functions” on page 4-69

• “Write Callback Methods” on page 4-82

• “S-Functions in Normal Mode Referenced Models” on page 4-83

• “Debug C MEX S-Functions” on page 4-85

• “Convert Level-1 C MEX S-Functions” on page 4-93

4 Writing S-Functions in C

Introduction

In this section...

“About Writing C S-Functions” on page 4-2

“Creating C MEX S-Functions” on page 4-3

About Writing C S-Functions
A C MEX S-function must provide information about the function to the
Simulink engine during the simulation. As the simulation proceeds, the
engine, the ODE solver, and the C MEX S-function interact to perform
specific tasks. These tasks include defining initial conditions and block
characteristics, and computing derivatives, discrete states, and outputs.

As with MATLAB S-functions, the Simulink engine interacts with a C MEX
S-function by invoking callback methods that the S-function implements.
Each method performs a predefined task, such as computing block outputs,
required to simulate the block whose functionality the S-function defines.
However, the S-function is free to perform the task in each method according
to the functionality the S-function implements. For example, the mdlOutputs
method must compute the block outputs at the current simulation time.
However, the S-function can calculate these outputs in any way that is
appropriate for the function. This callback-based API allows you to create
S-functions, and hence custom blocks, of any desired functionality.

The set of callback methods that C MEX S-functions can implement is larger
than that available for MATLAB S-functions. C MEX S-functions are required
to implement only a small subset of the callback methods in the S-function
API. If your block does not implement a particular feature, such as matrix
signals, you are free to omit the callback methods needed to implement a
feature. This allows you to create simple blocks very quickly.

The general format of a C MEX S-function is shown below:

#define S_FUNCTION_NAME your_sfunction_name_here
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"

4-2

Introduction

static void mdlInitializeSizes(SimStruct *S)
{
}

<additional S-function routines/code>

static void mdlTerminate(SimStruct *S)
{
}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a

MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration

function */
#endif

mdlInitializeSizes is the first routine the Simulink engine calls when
interacting with the S-function. The engine subsequently invokes other
S-function methods (all starting with mdl). At the end of a simulation, the
engine calls mdlTerminate.

Creating C MEX S-Functions
You can create C MEX S-functions using any of the following approaches:

• Handwritten S-function — You can write a C MEX S-function from scratch.
(“Basic C MEX S-Function” on page 4-36 provides a step-by-step example.)
See “Templates for C S-Functions” on page 4-43 for a complete skeleton
implementation of a C MEX S-function that you can use as a starting point
for creating your own S-functions.

• S-Function Builder — This block builds a C MEX S-function from
specifications and code fragments that you supply using a graphical user
interface. This eliminates the need for you to write S-functions from
scratch. See “Build S-Functions Automatically” on page 4-5 for more
information about the S-Function Builder.

• Legacy Code Tool — This utility builds a C MEX S-function from existing
C code and specifications that you supply using MATLAB code. See

4-3

4 Writing S-Functions in C

“Integrate C Functions Using Legacy Code Tool” on page 4-48 for more
information about integrating legacy C code into Simulink models.

Each of these approaches involves a tradeoff between the ease of writing
an S-function and the features supported by the S-function. Although
handwritten S-functions support the widest range of features, they can be
difficult to write. The S-Function Builder block simplifies the task of writing C
MEX S-functions but supports fewer features. The Legacy Code Tool provides
the easiest approach to creating C MEX S-functions from existing C code but
supports the fewest features. See “Available S-Function Implementations”
on page 2-2 for more information on the features and limitations of each of
these approaches to writing a C MEX S-function.

If you have Simulink Coder, in addition to the previous three approaches, the
Simulink Coder product provides a method for generating a C MEX S-function
from a graphical subsystem. If you are new to writing C MEX S-functions, you
can build portions of your application in a Simulink subsystem and use the
S-function target to convert it to an S-function. The generated files provides
insight on how particular blocks can be implemented within an S-function.
For details and limitations on using the S-function target, see “Generated
S-Function Block”.

4-4

Build S-Functions Automatically

Build S-Functions Automatically

In this section...

“About Building S-Functions Automatically” on page 4-5

“Deploying the Generated S-Function” on page 4-10

“How the S-Function Builder Builds an S-Function” on page 4-11

About Building S-Functions Automatically
The S-Function Builder is a Simulink block that builds an S-function from
specifications and C code that you supply. The S-Function Builder also serves
as a wrapper for the generated S-function in models that use the S-function.
This section explains how to use the S-Function Builder to build simple C
MEX S-functions.

Note For examples of using the S-Function Builder to build S-functions, see
the C file S-functions subsystem of the S-function examples provided with the
Simulink product. To display the examples, enter sfundemos at the MATLAB
command line (see “S-Function Examples” on page 1-27 for more information).

To build an S-function with the S-Function Builder:

1 Set the MATLAB current folder to the folder in which you want to create
the S-function.

Note This folder must be on the MATLAB path.

2 If you wish to connect a bus signal to the Input or Output port of the
S-Function Builder, you must first create a bus object. You perform this
task interactively using the Simulink Bus Editor. (For more information,
see “Manage Bus Objects with the Bus Editor”. Alternatively, you can
use Simulink.Bus as follows.

a In the MATLAB Command Window, enter:

4-5

4 Writing S-Functions in C

a = Simulink.Bus

As a result, the HeaderFile for the bus defaults to the empty string:

a =

Simulink.Bus
Description: ''
HeaderFile: ''

Elements: [0x1 double]

b If you wish to specify the header file for the bus, then at the MATLAB
command line:

a.Headerfile = 'Busdef.h'

If you do not specify a header file, Simulink automatically generates
Sfunctionname_bus.h

4-6

Build S-Functions Automatically

For a demonstration on how to use the S-Function Builder with a bus, see
the S-Function Builder with buses example by entering the following
command at the MATLAB command line:

open_system([matlabroot,'/toolbox/simulink/simdemos/simfeatures/...

sfbuilder_bususage']);

3 Create a new Simulink model.

4 Copy an instance of the S-Function Builder block from the User-Defined
Functions library in the Library Browser into the new model.

4-7

4 Writing S-Functions in C

5 Double-click the block to open the S-Function Builder dialog box (see
“S-Function Builder Dialog Box” on page 4-12).

4-8

Build S-Functions Automatically

6 Use the specification and code entry panes on the S-Function Builder dialog
box to enter information and custom source code required to tailor the
generated S-function to your application (see “S-Function Builder Dialog
Box” on page 4-12).

7 Click Build on the S-Function Builder to start the build process.

4-9

4 Writing S-Functions in C

The S-Function Builder builds a MEX file that implements the specified
S-function and saves the file in the current folder (see “How the S-Function
Builder Builds an S-Function” on page 4-11).

8 Save the model containing the S-Function Builder block.

Deploying the Generated S-Function
To use the generated S-function in another model, first check to ensure that
the folder containing the generated S-function is on the MATLAB path.
Then copy the S-Function Builder block from the model used to create the
S-function into the target model and set its parameters, if necessary, to the
values required by the target model.

Alternatively, you can deploy the generated S-function without using the
S-Function Builder block or exposing the underlying C source file. To do this:

1 Open the Simulink model that will include the S-function.

2 Copy an S-Function block from the User-Defined Functions library in the
Library Browser into the model.

3 Double-click on the S-Function block.

4 In the Block Parameters dialog box that opens, enter the name of the
executable file generated by the S-Function Builder into the S-function
name edit field.

5 Enter any parameters needed by the S-function into the S-function
parameters edit field. Enter the parameters in the order they appear in
the S-Function Builder dialog box.

6 Click OK on the S-Function Block Parameters dialog box.

You can use the generated executable file, for example, the .mexw32 file, in
any S-Function block in any model as long as the executable file is on the
MATLAB path.

4-10

Build S-Functions Automatically

How the S-Function Builder Builds an S-Function
The S-Function Builder builds an S-function as follows. First, it generates the
following source files in the current folder:

• sfun.c

where sfun is the name of the S-function that you specify in the S-function
name field of the S-Function Builder dialog box. This file contains the
C source code representation of the standard portions of the generated
S-function.

• sfun_wrapper.c

This file contains the custom code that you entered in the S-Function
Builder dialog box.

• sfun.tlc

This file permits the generated S-function to run in Simulink Rapid
Accelerator mode and allows for inlining the S-function during code
generation. In addition, this file generates code for the S-function in
Accelerator mode, thus allowing the model to run faster.

• sfun_bus.h

If you specify any Input port or Output port as a bus in the Data
Properties pane of the S-Function Builder dialog box, but do not specify
a header file, then the S-Function Builder automatically generates this
header file.

After generating the S-function source code, the S-Function Builder uses the
mex command to build the MEX file representation of the S-function from the
generated source code and any external custom source code and libraries
that you specified.

4-11

4 Writing S-Functions in C

S-Function Builder Dialog Box

In this section...

“About S-Function Builder” on page 4-12

“Parameters/S-Function Name Pane” on page 4-14

“Port/Parameter Pane” on page 4-15

“Initialization Pane” on page 4-15

“Data Properties Pane” on page 4-16

“Input Ports Pane” on page 4-17

“Output Ports Pane” on page 4-18

“Parameters Pane” on page 4-20

“Data Type Attributes Pane” on page 4-20

“Libraries Pane” on page 4-21

“Outputs Pane” on page 4-23

“Continuous Derivatives Pane” on page 4-26

“Discrete Update Pane” on page 4-27

“Build Info Pane” on page 4-28

“Example: Modeling a Two-Input/Two-Output System” on page 4-30

About S-Function Builder
The S-Function Builder dialog box enables you to specify the attributes of an
S-function to be built by an S-Function Builder block. To display the dialog
box, double-click the S-Function Builder block icon or select the block and
then select Open Block from the Edit menu on the model editor or the
block’s context menu.

4-12

S-Function Builder Dialog Box

The dialog box contains controls that let you enter information needed for the
S-Function Builder block to build an S-function to your specifications. The
controls are grouped into panes. See the following sections for information
on the panes and the controls that they contain.

4-13

4 Writing S-Functions in C

Note The following sections use the term target S-function to refer to the
S-function specified by the S-Function Builder dialog box.

See “Example: Modeling a Two-Input/Two-Output System” on page 4-30
for an example showing how to use the S-Function Builder to model a
two-input/two-output discrete state-space system.

Parameters/S-Function Name Pane
This pane displays the target S-function name and parameters and contains
the following controls.

S-function name
Specifies the name of the target S-function.

S-function parameters
This table displays the parameters of the target S-function. Each row of the
table corresponds to a parameter, and each column displays a property of the
parameter as follows:

• Name— Name of the parameter. Define and modify this property from the
“Parameters Pane” on page 4-20.

• Data type— Lists the data type of the parameter. Define and modify this
property from the “Parameters Pane” on page 4-20.

• Value — Specifies the value of the parameter. Enter a valid MATLAB
expression in this field.

Build/Save
Use this button to generate the C source code and executable MEX file from
the information you entered in the S-Function Builder. If the button is labeled
Build, the S-Function Builder generates the source code and executable
MEX file. If the button is labeled Save, it generates only the C source code.
Use the Save code only check box on the Build Info pane to toggle the
functionality of this button.

4-14

S-Function Builder Dialog Box

Hide/Show S-function editing tabs
Use the small button at the bottom-right of the Parameters/S-Function
Name pane, to collapse and expand the bottom portion of the S-Function
Builder dialog box.

Port/Parameter Pane
This Port/Parameter pane on the left displays the ports and parameters
that the dialog box specifies for the target S-function.

The pane contains a tree control whose top nodes correspond to the target
S-function input ports, output ports, and parameters, respectively. Expanding
the Input Ports, Output Ports, or Parameter node displays the input ports,
output ports, or parameters, respectively, specified for the target S-function.
Selecting any of the port or parameter nodes selects the corresponding entry
on the corresponding port or parameter specification pane.

Initialization Pane
The Initialization pane allows you to specify basic features of the S-function,
such as the width of its input and output ports and its sample time.

The S-Function Builder uses the information that you enter on this pane to
generate the mdlInitializeSizes callback method. The Simulink engine
invokes this method during the model initialization phase of the simulation
to obtain basic information about the S-function. (See “Simulink Engine
Interaction with C S-Functions” on page 4-69 for more information on the
model initialization phase.)

The Initialization pane contains the following fields.

Number of discrete states
Number of discrete states in the S-function.

Discrete states IC
Initial conditions of the discrete states in the S-function. You can enter the
values as a comma-separated list or as a vector (e.g., [0 1 2]). The number of
initial conditions must equal the number of discrete states.

4-15

4 Writing S-Functions in C

Number of continuous states
Number of continuous states in the S-function.

Continuous states IC
Initial conditions of the continuous states in the S-function. You can enter the
values as a comma-separated list or as a vector (e.g., [0 1 2]). The number of
initial conditions must equal the number of continuous states.

Sample mode
Sample mode of the S-function. The sample mode determines the length of
the interval between the times when the S-function updates its output. You
can select one of the following options:

• Inherited

The S-function inherits its sample time from the block connected to its
input port.

• Continuous

The block updates its outputs at each simulation step.

• Discrete

The S-function updates its outputs at the rate specified in the Sample
time value field of the S-Function Builder dialog box.

Sample time value
Scalar value indicating the interval between updates of the S-function outputs.
This field is enabled only if you select Discrete as the Sample mode.

Note The S-Function Builder does not currently support multiple-block
sample times or a nonzero offset time.

Data Properties Pane
The Data Properties pane allows you to add ports and parameters to your
S-function. The column of buttons to the left of the panes allows you to add,

4-16

S-Function Builder Dialog Box

delete, or reorder ports or parameters, depending on the currently selected
pane.

• To add a port or a parameter, click the Add button.

• To delete the currently selected port or parameter, click the Delete button.

• To move the currently selected port or parameter up one position in the
corresponding S-Function port or parameter list, click the Up button.

• To move the currently selected port or parameter down one position in the
corresponding S-function port or parameter list, click the Down button.

This pane also contains tabbed panes that enable you to specify the attributes
of the ports and parameters that you create. See the following topics for more
information.

• “Input Ports Pane” on page 4-17

• “Output Ports Pane” on page 4-18

• “Parameters Pane” on page 4-20

• “Data Type Attributes Pane” on page 4-20

Input Ports Pane
The Input Ports pane allows you to inspect and modify the properties of the
S-function input ports. The pane comprises an editable table that lists the
properties of the input ports in the order in which the ports appear on the
S-Function Builder block. Each row of the table corresponds to a port. Each
entry in the row displays a property of the port as follows.

Port name
Name of the port. Edit this field to change the port name.

Dimensions
Lists the number of dimensions of the input signal accepted by the port. To
display a list of supported dimensions, click the adjacent button. To change
the port dimensionality, select a new value from the list. Specify 1-D to size
the signal dynamically, regardless of the actual dimensionality of the signal.

4-17

4 Writing S-Functions in C

Rows
Specifies the size of the first (or only) dimension of the input signal. Specify
-1 to size the signal dynamically.

Columns
Specifies the size of the second dimension of the input signal (only if the input
port accepts 2-D signals).

Note For input signals with two dimensions, if the rows dimension is
dynamically sized, the columns dimension must also be dynamically sized or
set to 1. If the columns dimension is set to some other value, the S-function
will compile, but any simulation containing this S-function will not run due to
an invalid dimension specification.

Complexity
Specifies whether the input port accepts real or complex-valued signals.

Bus
If the input signal to the S-Function Builder block is a bus, then use the
drop-down menu in the Bus column to select ’on’.

Bus Name
Step 2 of the “Build S-Functions Automatically” on page 4-5 instructs you
to create a bus object, if your input signal is a bus. In the field provided in
the Bus Name column, enter the bus name that you defined while creating
the inport bus object.

Output Ports Pane
The Output Ports pane allows you to inspect and modify the properties
of the S-function output ports. The pane consists of a table that lists the
properties of the output ports in the order in which the ports appear on the
S-Function block. Each row of the table corresponds to a port. Each entry in
the row displays a property of the port as follows.

4-18

S-Function Builder Dialog Box

Port name
Name of the port. Edit this field to change the port name.

Dimensions
Lists the number of dimensions of signals output by the port. To display a
list of supported dimensions, click the adjacent button. To change the port
dimensionality, select a new value from the list. Specify 1-D to size the signal
dynamically, regardless of the actual dimensionality of the signal.

Rows
Specifies the size of the first (or only) dimension of the output signal. Specify
-1 to size the signal dynamically.

Columns
Specifies the size of the second dimension of the output signal (only if the port
outputs 2-D signals).

Note For output signals with two dimensions, if one of the dimensions is
dynamically sized the other dimension must also be dynamically sized or set
to 1. If the second dimension is set to some other value, the S-function will
compile, but any simulation containing this S-function will not run due to an
invalid dimension specification. In some cases, the calculations that determine
the dimensions of dynamically sized output ports may be insufficient and both
dimensions of the 2-D output signal may need to be hard coded.

Complexity
Specifies whether the port outputs real or complex-valued signals.

Bus
If the output signal to the S-Function Builder block is a bus, then use the
drop-down menu in the Bus column to select ’on’.

4-19

4 Writing S-Functions in C

Bus Name
Step 2 of the “Build S-Functions Automatically” on page 4-5 instructs you to
create a bus object. In the field provided in the Bus Name column, enter the
name that you defined while creating the outport bus object.

Parameters Pane
The Parameters pane allows you to inspect and modify the properties of the
S-function parameters. The pane consists of a table that lists the properties of
the S-function parameters. Each row of the table corresponds to a parameter.
The order in which the parameters appear corresponds to the order in which
the user must specify them in the S-function parameters field. Each entry
in the row displays a property of the parameter as follows.

Parameter name
Name of the parameter. Edit this field to change the name.

Data type
Lists the data type of the parameter. Click the adjacent button to display a
list of supported data types. To change the parameter data type, select a
new type from the list.

Complexity
Specifies whether the parameter has real or complex values.

Data Type Attributes Pane
This pane allows you to specify the data type attributes of the input and
output ports of the target S-function. The pane contains a table listing the
data type attributes of each of the S-functions ports. You can edit only some of
the fields in the table. The other fields are grayed out. Each row corresponds
to a port of the target S-function. Each column specifies an attribute of the
corresponding port.

Port
Name of the port. This field displays the name entered in the Input ports
and Output ports panes. You cannot edit this field.

4-20

S-Function Builder Dialog Box

Data Type
Data type of the port. Click the adjacent button to display a list of supported
data types. To change the data type, select a different data type from the list.

The remaining fields on this pane are enabled only if the Data Type field
specifies a fixed-point data type. See “Fixed-Point Data” for more information.

Libraries Pane
The Libraries pane allows you to specify the location of external code files
referenced by custom code that you enter in other panes of the S-Function
Builder dialog box. It includes the following fields.

Library/Object/Source files
External library, object code, and source files referenced by custom code that
you enter elsewhere on the S-Function Builder dialog box. List each file on a
separate line. If the file resides in the current folder, you need specify only
the file name. If the file resides in another folder, you must specify the full
path of the file.

Alternatively, you can also use this field to specify search paths for libraries,
object files, header files, and source files. To do this, enter the tag LIB_PATH,
INC_PATH, or SRC_PATH, respectively, followed by the path name. You can
make as many entries of this kind as you need but each must reside on a
separate line.

For example, consider an S-Function Builder project that resides at
d:\matlab6p5\work and needs to link against the following files:

• c:\customfolder\customfunctions.lib

• d:\matlab7\customobjs\userfunctions.obj

• d:\externalsource\freesource.c

The following entries enable the S-Function Builder to find these files:

SRC_PATH d:\externalsource
LIB_PATH $MATLABROOT\customobjs
LIB_PATH c:\customfolder

4-21

4 Writing S-Functions in C

customfunctions.lib
userfunctions.obj
freesource.c

As this example illustrates, you can use LIB_PATH to specify both object
and library file paths. You can include the library name in the LIB_PATH
declaration, however you must place the object file name on a separate line.
The tag $MATLABROOT indicates a path relative to the MATLAB installation.
You include multiple LIB_PATH entries on separate lines. The paths are
searched in the order specified.

You can also enter preprocessor (-D) directives in this field, for example,

-DDEBUG

Each directive must reside on a separate line.

Note Do not put quotation marks around the library path, even if the path
name has spaces in it. If you add quotation marks, the compiler will not
find the library.

Includes
Header files containing declarations of functions, variables, and macros
referenced by custom code that you enter elsewhere on the S-Function Builder
dialog box. Specify each file on a separate line as #include statements. Use
brackets to enclose the names of standard C header files (e.g., #include
<math.h>). Use quotation marks to enclose names of custom header files
(e.g., #include "myutils.h"). If your S-function uses custom include
files that do not reside in the current folder, you must use the INC_PATH
tag in the Library/Object/Source files field to set the include path for
the S-Function Builder to the directories containing the include files (see
“Library/Object/Source files” on page 4-21).

External function declarations
Declarations of external functions not declared in the header files listed in
the Includes field. Put each declaration on a separate line. The S-Function
Builder includes the specified declarations in the S-function source file that it

4-22

S-Function Builder Dialog Box

generates. This allows S-function code that computes the S-function states or
outputs to invoke the external functions.

Outputs Pane
Use the Outputs pane to enter code that computes the outputs of the
S-function at each simulation time step. This pane contains the following
fields.

Code description
Code for the mdlOutputs function that computes the output of the S-function
at each time step (or sample time hit, in the case of a discrete S-function).
When generating the source code for the S-function, the S-Function Builder
inserts the code in this field in a wrapper function of the form

void sfun_Outputs_wrapper(const real_T *u,
real_T *y,
const real_T *xD, /* optional */
const real_T *xC, /* optional */
const real_T *param0, /* optional */
int_T p_width0 /* optional */
real_T *param1 /* optional */
int_t p_width1 /* optional */
int_T y_width, /* optional */
int_T u_width) /* optional */

{

/* Your code inserted here */
}

where sfun is the name of the S-function. The S-Function Builder inserts
a call to this wrapper function in the mdlOutputs callback method that it
generates for your S-function. The Simulink engine invokes the mdlOutputs
method at each simulation time step (or sample time step in the case of
a discrete S-function) to compute the S-function output. The mdlOutputs
method in turn invokes the wrapper function containing your output code.
Your output code then actually computes and returns the S-function output.

4-23

4 Writing S-Functions in C

The mdlOutputs method passes some or all of the following arguments to
the outputs wrapper function.

Argument Description

u0, u1, ... uN Pointers to arrays containing the inputs to the
S-function, where N is the number of input ports
specified on the Input ports pane found on the Data
Properties pane. The names of the arguments that
appear in the outputs wrapper function are the same
as the names found on the Input ports pane. The
width of each array is the same as the input width
specified for each input on the Input ports pane. If
you specified -1 as an input width, the width of the
array is specified by the wrapper function’s u_width
argument (see below).

y0, y1, ... yN Pointer to arrays containing the outputs of the
S-function, where N is the number of output ports
specified on the Output ports pane found on the
Data Properties pane. The names of the arguments
that appear in the outputs wrapper function are
the same as the names found on the Output ports
pane. The width of each array is the same as the
output width specified for each output on the Output
ports pane. If you specified -1 as the output width,
the width of the array is specified by the wrapper
function’s y_width argument (see below). Use this
array to pass the outputs that your code computes
back to the Simulink engine.

xD Pointer to an array containing the discrete states
of the S-function. This argument appears only if
you specified discrete states on the Initialization
pane. At the first simulation time step, the discrete
states have the initial values that you specified on
the Initialization pane. At subsequent sample-time
steps, the states are obtained from the values that
the S-function computes at the preceding time step
(see “Discrete Update Pane” on page 4-27 for more
information).

4-24

S-Function Builder Dialog Box

Argument Description

xC Pointer to an array containing the continuous states
of the S-function. This argument appears only if you
specified continuous states on the Initialization
pane. At the first simulation time step, the continuous
states have the initial values that you specified on the
Initialization pane. At subsequent time steps, the
states are obtained by numerically integrating the
derivatives of the states at the preceding time step
(see “Continuous Derivatives Pane” on page 4-26 for
more information).

param0, p_width0,
param1, p_width1,
... paramN,
p_widthN

param0, param1, ...paramN are pointers to arrays
containing the S-function parameters, where N is the
number of parameters specified on the Parameters
pane found on the Data Properties pane. p_width0,
p_width1, ...p_widthN are the widths of the parameter
arrays. If a parameter is a matrix, the width equals
the product of the dimensions of the arrays. For
example, the width of a 3-by-2 matrix parameter
is 6. These arguments appear only if you specify
parameters on the Data Properties pane.

y_width Width of the array containing the S-function outputs.
This argument appears in the generated code only if
you specified -1 as the width of the S-function output.
If the output is a matrix, y_width is the product of the
dimensions of the matrix.

u_width Width of the array containing the S-function inputs.
This argument appears in the generated code only if
you specified -1 as the width of the S-function input.
If the input is a matrix, u_width is the product of the
dimensions of the matrix.

These arguments permit you to compute the output of the block as a function
of its inputs and, optionally, its states and parameters. The code that you
enter in this field can invoke external functions declared in the header files or
external declarations on the Libraries pane. This allows you to use existing
code to compute the outputs of the S-function.

4-25

4 Writing S-Functions in C

Inputs are needed in the output function
Select this check box if the current values of the S-function inputs are used
to compute its outputs. The Simulink engine uses this information to detect
algebraic loops created by directly or indirectly connecting the S-function
output to the S-function input.

Continuous Derivatives Pane
If the S-function has continuous states, use the Continuous Derivatives
pane to enter code required to compute the state derivatives. Enter code for
the mdlDerivatives function to compute the derivatives of the continuous
states in the Code description field on this pane. When generating code, the
S-Function Builder takes the code in this pane and inserts it in a wrapper
function of the form:

void sfun_Derivatives_wrapper(const real_T *u,
const real_T *y,
real_T *dx,
real_T *xC,
const real_T *param0, /* optional */
int_T p_width0, /* optional */
real_T *param1,/* optional */
int_T p_width1, /* optional */

int_T y_width, /* optional */
int_T u_width) /* optional */

{

/* Your code inserted here. */

}

where sfun is the name of the S-function. The S-Function Builder inserts a
call to this wrapper function in the mdlDerivatives callback method that it
generates for the S-function. The Simulink engine calls the mdlDerivatives
method at the end of each time step to obtain the derivatives of the continuous
states (see “Simulink Engine Interaction with C S-Functions” on page 4-69).
The Simulink solver numerically integrates the derivatives to determine the
continuous states at the next time step. At the next time step, the engine
passes the updated states back to the mdlOutputs method (see “Outputs
Pane” on page 4-23).

4-26

S-Function Builder Dialog Box

The mdlDerivatives callback method generated for the S-function passes the
following arguments to the derivatives wrapper function:

• u

• y

• dx

• xC

• param0, p_width0, param1, p_width1, ... paramN, p_widthN

• y_width

• u_width

The dx argument is a pointer to an array whose width is the same as the
number of continuous derivatives specified on the Initialization pane. Your
code should use this array to return the values of the derivatives that it
computes. See “Outputs Pane” on page 4-23 for the meanings and usage of the
other arguments. The arguments allow your code to compute derivatives as a
function of the S-function inputs, outputs, and, optionally, parameters. Your
code can invoke external functions declared on the Libraries pane.

Discrete Update Pane
If the S-function has discrete states, use the Discrete Update pane to enter
code that computes at the current time step the values of the discrete states
at the next time step.

Enter code for the mdlUpdate function to compute the values of the discrete
states in the Code description field on this pane. When generating code, the
S-Function Builder takes the code in this pane and inserts it in a wrapper
function of the form

void sfun_Update_wrapper(const real_T *u,
const real_T *y,
real_T *xD,
const real_T *param0, /* optional */
int_T p_width0, /* optional */
real_T *param1,/* optional */
int_T p_width1, /* optional */

4-27

4 Writing S-Functions in C

int_T y_width, /* optional */
int_T u_width) /* optional */

{

/* Your code inserted here. */

}

where sfun is the name of the S-function. The S-Function Builder inserts
a call to this wrapper function in the mdlUpdate callback method that it
generates for the S-function. The Simulink engine calls the mdlUpdate
method at the end of each time step to obtain the values of the discrete states
at the next time step (see “Simulink Engine Interaction with C S-Functions”
on page 4-69). At the next time step, the engine passes the updated states
back to the mdlOutputs method (see “Outputs Pane” on page 4-23).

The mdlUpdates callback method generated for the S-function passes the
following arguments to the updates wrapper function:

• u

• y

• xD

• param0, p_width0, param1, p_width1, ... paramN, p_widthN

• y_width

• u_width

See “Outputs Pane” on page 4-23 for the meanings and usage of these
arguments. Your code should use the xD (discrete states) variable to return
the values of the discrete states that it computes. The arguments allow your
code to compute the discrete states as functions of the S-function inputs,
outputs, and, optionally, parameters. Your code can invoke external functions
declared on the Libraries pane.

Build Info Pane
Use the Build Info pane to specify options for building the S-function MEX
file. This pane contains the following fields.

4-28

S-Function Builder Dialog Box

Compilation diagnostics
Displays information as the S-Function Builder is generating the C source
and executable files.

Show compile steps
Log each build step in the Compilation diagnostics field.

Create a debuggable MEX-File
Include debug information in the generated MEX file.

Generate wrapper TLC
Selecting this option allows you to generate a TLC file. You need to generate
a TLC file if you are running your model in Rapid Accelerator mode or
generating Simulink Coder code from your model. Also, while it is not
necessary for Accelerator mode simulations, the TLC file will generate code
for the S-function and thus makes your model run faster in Accelerator mode.

Save code only
Do not build a MEX file from the generated source code.

Enable access to SimStruct
Makes the SimStruct (S) accessible to the wrapper functions that S-Function
Builder generates. This enables you to use the SimStruct macros and
functions with your code in the Outputs, Continuous Derivatives, and
Discrete Updates panes. For example, with this option enabled, you can use
macros such as ssGetT in code that computes the S-function outputs:

double t = ssGetT(S);
if(t < 2) {

y0[0] = u0[0];
} else {

y0[0]= 0.0;
}

4-29

4 Writing S-Functions in C

Additional methods
Click this button to include additional TLC methods in the TLC file for your
S-function. Check the methods you want to add and click the Close button
to include the methods in your TLC file. For more information, see “Block
Target File Methods”.

Example: Modeling a Two-Input/Two-Output System
The example sfbuilder_example shows how to use the S-Function Builder to
model a two-input/two-output discrete state-space system with two states. In
the example, the state-space matrices are parameters to the S-function and
the S-function input and output are vectors. You can find a manually written
version of the S-function in dsfunc.c.

Note You need to build the S-function before running the example model.
To build the S-function, double-click on the S-Function Builder block in the
model and click Build on the S-Function Builder dialog box that opens.

Initializing S-Function Settings
The Initialization pane specifies the number of discrete states and their
initial conditions, as well as sets the sample time of the S-function. This
example contains two discrete states, each initialized to 1, and a discrete
sample mode with a sample time of 1.

4-30

S-Function Builder Dialog Box

Initializing Inputs, Outputs, and Parameters
The Data Properties pane specifies the dimensions of the S-function input
and output, as well as initializes the state-space matrices.

The Input ports pane defines the one S-function input port as a 1-D vector
with two rows.

4-31

4 Writing S-Functions in C

The Output ports pane similarly defines the one S-function output port as
a 1-D vector with two rows.

The Parameters pane defines four parameters, one for each of the four
state-space matrices.

4-32

S-Function Builder Dialog Box

The S-function parameters pane at the top of the S-Function Builder
contains the actual values for the state-space matrices, entered as MATLAB
expressions. In this example, each state-space parameter is a two-by-two
matrix. Alternatively, you can store the state-space matrices in variables in
the MATLAB workspace and enter the variable names into the Value field
for each parameter.

4-33

4 Writing S-Functions in C

Defining the Output Method
The Outputs pane calculates the S-function output as a function of the
input and state vectors and the state-space matrices. In the outputs code,
reference S-function parameters using the parameter names defined on the
Data Properties — Parameters pane. Index into 2-D matrices using a
scalar index, keeping in mind that S-functions use zero-based indexing. For
example, to access the element C(2,1) in the S-function parameter C, use
C[1]in the S-function code.

The Outputs pane also selects the Inputs are needed in the output
function (direct feedthrough) option since this state-space model has a
nonzero D matrix.

Defining the Discrete Update Method
The Discrete Update pane updates the discrete states. As with the outputs
code, use the S-function parameter names and index into 2-D matrices using
a scalar index, keeping in mind that S-functions use zero-based indexing.
For example, to access the element A(2,1) in the S-function parameter A,
use A[1]in the S-function code. The variable xD stores the final values of
the discrete states.

4-34

S-Function Builder Dialog Box

Building the State-Space Example
Click the Build button on the S-Function Builder to create an executable for
this S-function. You can now run the model and compare the output to the
original discrete state-space S-function contained in sfcndemo_dsfunc.

4-35

4 Writing S-Functions in C

Basic C MEX S-Function

In this section...

“Introducing an Example of a Basic C MEX S-Function” on page 4-36

“Defines and Includes” on page 4-39

“Callback Method Implementations” on page 4-39

“Simulink/Simulink® Coder™ Interfaces” on page 4-41

“Building the Timestwo Example” on page 4-42

Introducing an Example of a Basic C MEX S-Function
This section presents an example of a C MEX S-function that you can use as a
model for creating simple C S-functions. The example S-function timestwo.c
outputs twice its input.

The following model uses the timestwo S-function to double the amplitude
of a sine wave and plot it in a scope.

The block dialog for the S-function specifies timestwo as the S-function name;
the parameters field is empty.

The timestwo S-function contains the S-function callback methods shown in
this figure. At the end of S-function, include the code snippet as described in
“Simulink/Simulink® Coder™ Interfaces” on page 4-41.

4-36

Basic C MEX S-Function

The contents of timestwo.c are shown below. A description of the code is
provided after the example.

#define S_FUNCTION_NAME timestwo /* Defines and Includes */

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0);

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch reported by the Simulink engine*/

}

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S,1)) return;

ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetNumSampleTimes(S, 1);

4-37

4 Writing S-Functions in C

/* Take care when specifying exception free code - see sfuntmpl.doc */

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

}

static void mdlOutputs(SimStruct *S, int_T tid)

{

int_T i;

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

real_T *y = ssGetOutputPortRealSignal(S,0);

int_T width = ssGetOutputPortWidth(S,0);

for (i=0; i<width; i++) {

*y++ = 2.0 *(*uPtrs[i]);

}

}

static void mdlTerminate(SimStruct *S){}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

This example has three parts:

• Defines and includes

• Callback method implementations

• Simulink (or Simulink Coder) product interfaces

4-38

Basic C MEX S-Function

Defines and Includes
The example starts with the following define statements.

#define S_FUNCTION_NAME timestwo
#define S_FUNCTION_LEVEL 2

The first define statement specifies the name of the S-function (timestwo).
The second define statement specifies that the S-function is in the Level
2 format (for more information about Level 1 and Level 2 S-functions, see
“Convert Level-1 C MEX S-Functions” on page 4-93).

After defining these two items, the example includes simstruc.h, which
is a header file that gives access to the SimStruct data structure and the
MATLAB Application Program Interface (API) functions.

#define S_FUNCTION_NAME timestwo
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"

The simstruc.h file defines a data structure, called the SimStruct, that the
Simulink engine uses to maintain information about the S-function. The
simstruc.h file also defines macros that enable your MEX file to set values
in and get values (such as the input and output signal to the block) from the
SimStruct (see “About SimStruct Functions” on page 10-2).

Callback Method Implementations
The next part of the timestwo S-function contains implementations of
required callback methods.

mdlInitializeSizes
The Simulink engine calls mdlInitializeSizes to inquire about the number
of input and output ports, sizes of the ports, and any other information (such
as the number of states) needed by the S-function.

The timestwo implementation of mdlInitializeSizes specifies the following
size information:

• Zero parameters

4-39

4 Writing S-Functions in C

Therefore, the S-function parameters field of the S-Function Block
Parameters dialog box must be empty. If it contains any parameters, the
engine reports a parameter mismatch.

• One input port and one output port

The widths of the input and output ports are dynamically sized. This tells
the engine that the S-function can accept an input signal of any width. By
default, the widths of dynamically sized input and output port are equal
when the S-function has only one input and output port.

• One sample time

The mdlInitializeSampleTimes callback method specifies the actual
value of the sample time.

• Exception free code

Specifying exception-free code speeds up execution of your S-function. You
must take care when specifying this option. In general, if your S-function
is not interacting with the MATLAB environment, you can safely specify
this option. For more details, see “Simulink Engine Interaction with C
S-Functions” on page 4-69.

mdlInitializeSampleTimes
The Simulink engine calls mdlInitializeSampleTimes to set the sample
times of the S-function. A timestwo block executes whenever the
driving block executes. Therefore, it has a single inherited sample time,
INHERITED_SAMPLE_TIME.

mdlOutputs
The engine calls mdlOutputs at each time step to calculate the block outputs.
The timestwo implementation of mdlOutputs multiplies the input signal by 2
and writes the answer to the output.

The line:

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

accesses the input signal. The ssGetInputPortRealSignalPtrs macro
returns a vector of pointers, which you must access using

4-40

Basic C MEX S-Function

*uPtrs[i]

For more details on accessing input signals, see “Accessing Signals Using
Pointers” on page 4-78.

The line:

real_T *y = ssGetOutputPortRealSignal(S,0);

accesses the output signal. The ssGetOutputPortRealSignal macro returns
a pointer to an array containing the block outputs.

The line:

int_T width = ssGetOutputPortWidth(S,0);

obtains the width of the signal passing through the block. The S-function
loops over the inputs to compute the outputs.

mdlTerminate
The engine calls mdlTerminate to provide the S-function with an opportunity
to perform tasks at the end of the simulation. This is a mandatory S-function
routine. The timestwo S-function does not perform any termination actions,
and this routine is empty.

Simulink/Simulink Coder Interfaces
At the end of the S-function, include the following code to attach your
S-function to either the Simulink or Simulink Coder products.

#ifdef MATLAB_MEX_FILE
#include "simulink.c"
#else
#include "cg_sfun.h"
#endif

This trailer is required at the end of every S-function. If it is omitted, any
attempt to compile your S-function will abort with a failure during build
of exports file error message.

4-41

4 Writing S-Functions in C

Building the Timestwo Example
To compile this S-function, enter

mex timestwo.c

at the command line. The mex command compiles and links the timestwo.c
file to create a dynamically loadable executable for the Simulink software to
use.

The resulting executable is referred to as a MEX S-function, where MEX
stands for “MATLAB Executable.” The MEX file extension varies from
platform to platform. For example, on a 32–bit Microsoft® Windows® system,
the MEX file extension is .mexw32.

4-42

Templates for C S-Functions

Templates for C S-Functions

In this section...

“About the Templates for C S-Functions” on page 4-43

“S-Function Source File Requirements” on page 4-43

“The SimStruct” on page 4-46

“Data Types in S-Functions” on page 4-46

“Compiling C S-Functions” on page 4-46

About the Templates for C S-Functions
Use one of the provided C MEX S-function templates as a starting
point for creating your own S-function. The templates contain skeleton
implementations of callback methods with comments that explain their use.
The template file, sfuntmpl_basic.c, contains commonly used S-function
routines. A template containing all available routines (as well as more
comments) can be found in sfuntmpl_doc.c in the same folder.

Note We recommend that you use the C MEX file template when developing
MEX S-functions.

S-Function Source File Requirements
This section describes requirements that every S-function source file must
meet to compile correctly. The S-function templates meet these requirements.

Statements Required at the Top of S-Functions
For S-functions to operate properly, each source module of your S-function
that accesses the SimStruct must contain the following sequence of defines
and include

#define S_FUNCTION_NAME your_sfunction_name_here

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

4-43

4 Writing S-Functions in C

where your_sfunction_name_here is the name of your S-function (i.e., what
you enter in the S-Function Block Parameters dialog box). These statements
give you access to the SimStruct data structure that contains pointers to the
data used by the simulation. The included code also defines the macros used
to store and retrieve data in the SimStruct, described in detail in “Convert
Level-1 C MEX S-Functions” on page 4-93. In addition, the code specifies that
you are using the Level-2 S-function format.

Note All S-functions from Simulink version 1.3 through version 2.1 are
considered to be Level-1 S-functions. They are compatible with newer versions
of the software, but we recommend that you write new S-functions in the
Level-2 format.

The following headers are included by simstruc.h when compiling as a MEX
file.

Header Files Included by simstruc.h When Compiling as a MEX File

Header File Description

matlabroot/extern/include/tmwtypes.h General data types, e.g., real_T

matlabroot/simulink/include/simstruc_types.h SimStruct data types, e.g., DTypeId

matlabroot/extern/include/mex.h MATLAB MEX file API routines to
interface MEX files with the MATLAB
environment

matlabroot/extern/include/matrix.h MATLAB External Interface API
routines to query and manipulate
MATLAB matrices

When compiling your S-function for use with the Simulink Coder product,
simstruc.h includes the following.

4-44

Templates for C S-Functions

Header Files Included by simstruc.h When Used by the Simulink Coder Product

Header File Description

matlabroot/extern/include/tmwtypes.h General types, e.g., real_T

matlabroot/simulink/include/simstruc_types.h SimStruct data types, e.g., DTypeId

matlabroot/rtw/c/src/rt_matrx.h Macros for MATLAB API routines

Callback Methods That an S-Function Must Implement
Your S-function must implement the following functions (see “Write Callback
Methods” on page 4-82):

• mdlInitializeSizes specifies the sizes of various parameters in the
SimStruct, such as the number of output ports for the block.

• mdlInitializeSampleTimes specifies the sample time(s) of the block.

• mdlOutputs calculates the output of the block.

• mdlTerminate performs any actions required at the termination of the
simulation. If no actions are required, this function can be implemented as
a stub.

Statements Required at the Bottom of S-Functions
Your S-function must include the following trailer code at the end of the main
module only.

#ifdef MATLAB_MEX_FILE /* Is this being compiled as MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration func */

#endif

These statements select the appropriate code for your particular application:

• simulink.c is included if the file is being compiled into a MEX- file.

• cg_sfun.h is included if the file is being used with the Simulink Coder
product to produce a standalone or real-time executable.

4-45

4 Writing S-Functions in C

Note This trailer code must not be in the body of any S-function routine.

The SimStruct
The file simstruc.h is a C language header file that defines the SimStruct
data structure and its access macros. It encapsulates all the data relating to
the model or S-function, including block parameters and outputs.

There is one SimStruct data structure allocated for the Simulink model.
Each S-function in the model has its own SimStruct associated with it. The
organization of these SimStructs is much like a folder tree. The SimStruct
associated with the model is the root SimStruct. Any SimStruct associated
with an S-function is a child SimStruct.

The Simulink product provides a set of macros that S-functions can use to
access the fields of the SimStruct. See “About SimStruct Functions” on page
10-2 for more information.

Data Types in S-Functions
The file tmwtypes.h is a C language header file that defines a set of data
types used in the S-function template and in the SimStruct. These data
types, such as real_T, uint32_T, etc., provide a way to switch between
different data types for 16, 32, and 64 bit systems, allowing greater platform
independence and flexibility.

S-functions are not required to use these data types. For example, you can
edit the example csfunc.c and change real_T to double and int_T to int. If
you compile and simulate the S-function, the results will be identical to the
results using the previous data types.

Compiling C S-Functions
Your S-function can be compiled in one of three modes, defined either by the
mex command or by the Simulink Coder product when the S-function is built:

• MATLAB_MEX_FILE— Indicates that the S-function is being built as a MEX
file for use with the Simulink product.

4-46

Templates for C S-Functions

• RT— Indicates that the S-function is being built with the Simulink Coder
product for a real-time application using a fixed-step solver.

• NRT— Indicates that the S-function is being built with the Simulink Coder
product for a non-real-time application using a variable-step solver.

The build process you use automatically defines the mode for your S-function.

4-47

4 Writing S-Functions in C

Integrate C Functions Using Legacy Code Tool

In this section...

“Overview” on page 4-48

“Example of Integrating Existing C Functions into Simulink Models with
the Legacy Code Tool” on page 4-51

“Registering Legacy Code Tool Data Structures” on page 4-54

“Declaring Legacy Code Tool Function Specifications” on page 4-56

“Generating and Compiling the S-Functions” on page 4-64

“Generating a Masked S-Function Block for Calling a Generated
S-Function” on page 4-65

“Forcing Simulink Accelerator Mode to Use S-Function TLC Inlining Code”
on page 4-65

“Calling Legacy C++ Functions” on page 4-66

“Handling Multiple Registration Files” on page 4-66

“Deploying Generated S-Functions” on page 4-67

“Legacy Code Tool Examples” on page 4-67

“Legacy Code Tool Limitations” on page 4-68

Overview
You can integrate existing C (or C++) functions—for example, device drivers,
lookup tables, and general functions and interfaces—into Simulink models by
using the Legacy Code Tool. Using specifications that you supply as MATLAB
code, the tool transforms existing functions into C MEX S-functions that you
can include in Simulink models. If you use the Simulink Coder product to
generate code from a model, the Legacy Code Tool can insert an appropriate
call to your C function into the generated code. For details, see “Integrate
External Code Using Legacy Code Tool”.

In comparison to using the S-Function Builder or writing an S-function, the
Legacy Code Tool can be easier to use and it generates optimized code (does
not generate wrapper code) often required by embedded systems. However,
you should consider one of the alternate approaches for a hybrid system,

4-48

Integrate C Functions Using Legacy Code Tool

such as a system that includes a plant and controller, or a system component
written in a language other than C or C++. Alternative approaches are more
flexible in that they support more features and programming languages.

To interact with the Legacy Code Tool, you

• Use a Legacy Code Tool data structure to specify

- A name for the S-function

- Specifications for the existing C functions

- Files and paths required for compilation

- Options for the generated S-function

• Use the legacy_code function to

- Initialize the Legacy Code Tool data structure for a given C function

- Generate an S-function for use during simulation

- Compile and link the generated S-function into a dynamically loadable
executable

- Generate a masked S-function block for calling the generated S-function

- Generate a TLC block file and, if necessary, an rtwmakecfg.m file for
code generation (Simulink Coder product license required)

Note Before you can use legacy_code, you must ensure that a C compiler is
set up for your MATLAB installation.

The following diagram illustrates a general procedure for using the Legacy
Code Tool. “Example of Integrating Existing C Functions into Simulink
Models with the Legacy Code Tool” on page 4-51 provides an example that
uses the Legacy Code Tool to transform an existing C function into a C MEX
S-function.

4-49

4 Writing S-Functions in C

If you have a Simulink Coder product license, see “Integrate External Code
Using Legacy Code Tool” for information on using the Legacy Code Tool for
code generation.

4-50

Integrate C Functions Using Legacy Code Tool

Example of Integrating Existing C Functions into
Simulink Models with the Legacy Code Tool
Suppose you have an existing C function that outputs the value of its
floating-point input multiplied by two. The function is defined in a source
file named doubleIt.c, and its declaration exists in a header file named
doubleIt.h as shown here.

�������	
�����	�����

����	
����	�������	
������
�

�	������
�
�������
�

�������	
�

�����	�
�� !"#$�%�&�
��	���	
�� !"#$�%�&�

����	
����	�������	
�������

�	����

�������	
�

To use the Legacy Code Tool to incorporate this C function into a Simulink
model as a C MEX S-function:

1 Use the legacy_code function to initialize a MATLAB structure with fields
that represent Legacy Code Tool properties. For example, create a Legacy
Code Tool data structure named def by entering the following command
at the MATLAB command prompt:

def = legacy_code('initialize')

The Legacy Code Tool data structure named def displays its fields in the
MATLAB command window as shown here:

def =

SFunctionName: ''
InitializeConditionsFcnSpec: ''

OutputFcnSpec: ''
StartFcnSpec: ''

TerminateFcnSpec: ''
HeaderFiles: {}
SourceFiles: {}

HostLibFiles: {}

4-51

4 Writing S-Functions in C

TargetLibFiles: {}
IncPaths: {}
SrcPaths: {}
LibPaths: {}

SampleTime: 'inherited'
Options: [1x1 struct]

2 Specify appropriate values for fields in the Legacy Code Tool data structure
to identify properties of the existing C function. For example, specify the C
function source and header filenames by entering the following commands
at the MATLAB command prompt:

def.SourceFiles = {'doubleIt.c'};
def.HeaderFiles = {'doubleIt.h'};

You must also specify information about the S-function that the Legacy
Code Tool produces from the C code. For example, specify a name for the
S-function and its output function declaration by entering:

def.SFunctionName = 'ex_sfun_doubleit';
def.OutputFcnSpec = 'double y1 = doubleIt(double u1)';

See the legacy_code reference page for information about the various
data structure fields.

3 Use the legacy_code function to generate an S-function source file from
the existing C function. At the MATLAB command prompt, type:

legacy_code('sfcn_cmex_generate', def);

The Legacy Code Tool uses the information specified in def to create the
S-function source file named ex_sfun_doubleit.c in the current MATLAB
folder.

4 Use the legacy_code function to compile and link the S-function source file
into a dynamically loadable executable that the Simulink software can use.
At the MATLAB command prompt, type:

legacy_code('compile', def);

The following messages appear in the MATLAB command window:

4-52

Integrate C Functions Using Legacy Code Tool

Start Compiling ex_sfun_doubleit
mex('ex_sfun_doubleit.c', 'd:\work\lct_demos\doubleIt.c',

'-Id:\work\lct\lct_demos')
Finish Compiling ex_sfun_doubleit
Exit

On a 32-bit Microsoft Windows system, the resulting S-function executable
is named ex_sfun_doubleit.mexw32.

5 Use the legacy_code function to insert a masked S-Function block into a
Simulink model. The Legacy Code Tool configures the block to use the C
MEX S-function created in the previous step. Also, the tool masks the
block such that it displays the value of its OutputFcnSpec property (see the
description of the legacy_code function). For example, create a new model
containing a masked S-Function block by issuing the following command
at the MATLAB command prompt:

legacy_code('slblock_generate', def);

The block appears in an empty model editor window as shown here:

The following Simulink model demonstrates that the C MEX S-function
produced by the Legacy Code Tool behaves like the C function doubleIt. In

4-53

4 Writing S-Functions in C

particular, the S-Function block named ex_sfun_doubleit returns the value
of its floating-point input multiplied by two.

Registering Legacy Code Tool Data Structures
The first step to using the Legacy Code Tool is to register one or more
MATLAB structures with fields that represent properties of the existing C
code and the S-function being generated. The registration process is flexible.
You can choose to set up resources and initiate registration in a variety of
ways, including

• Placing all required header and source files in the current working folder
or in a hierarchical folder structure

4-54

Integrate C Functions Using Legacy Code Tool

• Generating and placing one or more S-functions in the current working
folder

• Having one or more registration files in the same folder

To register a Legacy Code Tool data structure:

1 Use the legacy_code function, specifying 'initialize' as the first
argument.

lct_spec = legacy_code('initialize')

The Legacy Code Tool data structure named lct_spec displays its fields in
the MATLAB command window as shown below:

lct_spec =

SFunctionName: ''
InitializeConditionsFcnSpec: ''

OutputFcnSpec: ''
StartFcnSpec: ''

TerminateFcnSpec: ''
HeaderFiles: {}
SourceFiles: {}

HostLibFiles: {}
TargetLibFiles: {}

IncPaths: {}
SrcPaths: {}
LibPaths: {}

SampleTime: 'inherited'
Options: [1x1 struct]

2 Define values for the data structure fields (properties) that apply to your
existing C function and the S-function you intend to generate. Minimally,
you must specify

• Source and header files for the existing C function (SourceFiles and
HeaderFiles)

• A name for the S-function (SFunctionName)

4-55

4 Writing S-Functions in C

• At least one function specification for the S-function
(InitializeConditionsFcnSpec, OutputFcnSpec, StartFcnSpec,
TerminateFcnSpec)

For a complete list and descriptions of the fields in the structure, see the
legacy_code function reference page.

If you define fields that specify compilation resources and you specify relative
paths, the Legacy Code Tool searches for the resources relative to the
following directories, in the following order:

1 Current working folder

2 C-MEX S-function folder, if different than the current working folder

3 Directories you specify

• IncPaths for header files

• SrcPaths for source files

• LibPaths for target and host libraries

4 Directories on the MATLAB search path, excluding toolbox directories

Declaring Legacy Code Tool Function Specifications
The InitializeConditionsFcnSpec, OutputFcnSpec, StartFcnSpec, and
TerminateFcnSpec fields defined in the Legacy Code Tool data structure
(see the description of the legacy_code function) require string values that
adhere to a specific syntax format. The required syntax format enables the
Legacy Code Tool to map the return value and arguments of an existing C
function to the return value, inputs, outputs, parameters, and work vectors of
the S-function that the tool generates.

General syntax

return-spec = function-name(argument-spec)

For example, the following string specifies a function named doubleIt with
return specification double y1 and input argument specification double u1.

def.OutputFcnSpec = 'double y1 = doubleIt(double u1)';

4-56

Integrate C Functions Using Legacy Code Tool

For more detail on declaring function specifications, see

• “Return Specification” on page 4-57

• “Function Name” on page 4-58

• “Argument Specification” on page 4-58

• “Supported Data Types” on page 4-61

• “Legacy Code Tool Function Specification Rules” on page 4-62

• “Legacy C Function Rules” on page 4-63

Return Specification
The return specification defines the data type and variable name for the
return value of the existing C function.

return-type return-variable

return-type A data type listed in “Supported Data Types” on page
4-61.

return-variable Token of the form y1, y2, ..., yn, where n is the total
number of output arguments.

If the function does not return a value, you can omit the return specification
or specify it as void.

The following table shows valid function specification syntax for an integer
return value. Use the table to identify the syntax you should use for your
C function prototype.

Return Type C Function Prototype Legacy Code Tool
Function Specification

No return
value

void myfunction(...) void myfunction(...)

Scalar value int = myfunction(...) int16 y1 =
myfunction(...)

4-57

4 Writing S-Functions in C

Function Name
The function name that you specify must be the same as your existing C
function name.

For example, consider the following C function prototype:

float doubleIt(float inVal);

In this case, the function name in the Legacy Code Tool function specification
must be doubleIt.

You should not specify the name of a C macro. If you must, set the field
Options.isMacro to true in case expression folding is enabled.

Argument Specification
The argument specification defines one or more data type and token pairs
that represent the input, output, parameter, and work vector arguments of
the existing C function. The function input and output arguments map to
block input and output ports and parameters map to workspace parameters.

argument-type argument-token

argument-type A data type listed in “Supported Data Types” on page
4-61.

argument-token Token of one of the following forms:
• Input — u1, u2, ..., un, where n is the total number
of input arguments

• Output — y1, y2, ..., yn, where n is the total
number of output arguments

• Parameter — p1, p2, ..., pn, where n is the total
number of parameter arguments

• Work vectors (persistent memory) — work1, work2,
..., workn, where n is the total number of work
vector arguments

If the function has no arguments, you can omit the argument specification
or specify it as void.

4-58

Integrate C Functions Using Legacy Code Tool

Consider the following C function prototype:

float powerIt(float inVal, int exponent);

To generate an S-function that calls the preceding function at each time step,
you would set the Legacy Code Tool data structure field OutputFcnSpec to
the following string:

'single y1 = powerIt(single u1, int16 p1)'

Using this function specification, the Legacy Code Tool maps the following:

Return Value or
Argument...

of C Type... To Token... of Data Type...

Return value float y1 single

inVal float u1 single

exponent int p1 int16

The following table shows valid function specification syntax for arguments of
type integer. Use the table to identify and then adapt the syntax you should
use for your C function prototype.

Argument Type C Function Prototype Legacy Code Tool Function
Specification

Input Arguments

No arguments function(void) function(void)

Scalar pass by value function(int in1) function(int16 u1)

Scalar pass by pointer function(int *in1) function(int16 u1[1])

Fixed vector function(int in1[10]) or
function(int *in1)

function(int16 u1[10])

Variable vector function(int in1[]) or
function(int *in1)

function(int16 u1[])

Fixed matrix function(int in1[15]) or
function(int in1[]) or
function(int *in1)

function(int16 u1[3][5])

4-59

4 Writing S-Functions in C

Argument Type C Function Prototype Legacy Code Tool Function
Specification

Variable matrix function(int in1[]) or
function(int *in1)

function(int16 u1[][])

Output Arguments

Scalar pointer function(int *y1) function(int16 y1[1])

Fixed vector function(int y1[10]) or
function(int *y1)

function(int16 y1[10])

Fixed matrix function(int y1[15]) or
function(int y1[]) or
function(int *y1)

function(int16 y1[3][5])

Parameter Arguments

Scalar pass by value function(int p1) function(int16 p1)

Scalar pass by pointer function(int *p1) function(int16 p1[1])

Fixed vector function(int p1[10]) or
function(int *p1)

function(int16 p1[10])

Variable vector function(int p1[]) or
function(int *p1)

function(int16 p1[])

Fixed matrix function(int p1[15]) or
function(int p1[]) or
function(int *p1)

function(int16 p1[3][5])

Variable matrix function(int p1[]) or
function(int *p1)

function(int16 p1[][])

Work Vector Arguments

Scalar passed by value function(int work1) function(int16 work1)

Scalar pointer function(int *work1)
function(void *work1)
function(void **work1)

function(int16 work1[1])
void function(void
*work1)
void function(void
**work1)

4-60

Integrate C Functions Using Legacy Code Tool

Argument Type C Function Prototype Legacy Code Tool Function
Specification

Fixed vector function(int work1[10]) or
function(int *work1)

function(int16 work1[10])

Fixed matrix function(int work1[15]) or
function(int work1[]) or
function(int *work1)

function(int16
work1[3][5])

Supported Data Types

Data Type Supported
for Input and
Output?

Supported
for
Parameters?

Supported
for Work
Vectors?

“Data Types Supported by
Simulink”

Yes Yes Yes

Simulink.Bus1 Yes Yes Yes

Array of Simulink.Bus2 Yes No Yes

Simulink.NumericType3 Yes Yes Yes

Simulink.AliasType1 Yes Yes Yes

enum1 Yes Yes Yes

Fixed-point4 Yes Yes Yes

Fi objects N/A Yes N/A

Complex numbers5 Yes Yes Yes

1-D array Yes Yes Yes

2-D array6 Yes Yes Yes

n-D array7 Yes Yes Yes

void * No No Yes

void ** No No Yes

1 You must supply the header file that declares the structure of the bus,
declares the enum type, or defines the data type with the same name as an

4-61

4 Writing S-Functions in C

alias. The structure of the bus declared in the header file must match
the structure of the bus object (for example, the number and order of
elements, data types and widths of elements, and so on). For an example,
see sldemo_lct_bus.

2 A bus element can be complex, but only with Simulink built-in data types.
Nesting of arrays to any level is also supported.

3 You must supply the header file that defines the data type only if the
numeric data type is also an alias.

4 You must declare the data as a Simulink.NumericType object (unspecified
scaling is not supported). For examples, see sldemo_lct_fixpt_signals
and sldemo_lct_fixpt_params.

5 Limited to use with Simulink built-in data types. To specify a complex data
type, enclose the built-in data type within angle brackets (<>) and prepend
the word complex (for example, complex<double>). For an example, see
sldemo_lct_cplxgain.

6 The MATLAB, Simulink, and Simulink Coder products store
two-dimensional matrix data in column-major format as a vector. If your
external function code is written for row-major data, transpose the matrix
data in the MATLAB environment.

7 For a multidimensional signal, you can use the size function to determine
the number of elements in the signal. For examples, see sldemo_lct_lut
and sldemo_lct_ndarray.

For more information, see “Data Types Supported by Simulink”.

Legacy Code Tool Function Specification Rules
Specifications for the legacy_code must adhere to the following rules:

• If an argument is not scalar, you must pass the argument by reference.

• The numbering of input, output, parameter, and work vector argument
tokens must start at 1 and increase monotonically.

• For a given Legacy Code Tool data structure, the data type and size of input,
output, parameter, and work vector arguments must be the same across

4-62

Integrate C Functions Using Legacy Code Tool

function specifications for StartFcnSpec, InitializeConditionsFcnSpec,
OutputFcnSpec, and TerminateFcnSpec.

• You can use the size function to

- Get the size of any input, output, parameter, or work vector argument
and pass the size as input to the legacy function

- Specify the input argument dimensions as a function of other parameter
argument dimensions

- Specify the output or work vector argument dimensions as a function of
other input or parameter argument dimensions

Consider the following example, which demonstrates both uses of the
function:

def.OutputFcnSpec=

'void foo(double p1[][], double u1[size(p1,2)], double y1[size(u1,1)], ...

double work1[size(u1,1)], int32 size(u1,1))'

- p1 is a two-dimensional parameter that is sized dynamically

- u1 is a one-dimensional vector with the same number of elements as
the second dimension of p1

- y1 is a one-dimensional vector with the same number of element as u1

- work1 is a one-dimensional vector with the same number of element as u1

- int32 size(u1,1) returns the number of elements in the vector u1 as
the fifth input argument

Legacy C Function Rules
To integrate a C function using the Legacy Code Tool, the function must
adhere to the following rules:

• The function must not change the value of input arguments.

• The function’s return value cannot be a pointer.

• Function specifications you define for the StartFcnSpec,
InitializeConditionsFcnSpec, or TerminateFcnSpec cannot access
input or output arguments.

4-63

4 Writing S-Functions in C

Generating and Compiling the S-Functions
After you register a Legacy Code Tool data structure for an existing C
function, use the legacy_code function as explained below to generate,
compile, and link the S-function.

1 Generate a C MEX S-function based on the information defined in the
structure. Call legacy_code with 'sfcn_cmex_generate' as the first
argument and the name of the data structure as the second argument.

legacy_code('sfcn_cmex_generate', lct_spec);

2 Compile and link the S-function. This step assumes that a C compiler is set
up for your MATLAB installation. Call legacy_code with 'compile' as the
first argument and the name of the data structure as the second argument.

legacy_code('compile', lct_spec);

Informational messages similar to the following appear in the MATLAB
command window and a dynamically loadable executable results.
On a 32-bit Windows system, the Simulink software names the file
ex_sfun_doubleit.mexw32.

Start Compiling ex_sfun_doubleit
mex ex_sfun_doubleit.c -Id:\work\lct\lct_demos
Finish Compiling ex_sfun_doubleit
Exit

As a convenience, you can generate, compile, and link the S-function in a
single step by calling legacy_code with the string 'generate_for_sim'.
The function also generates a TLC file for accelerated simulations, if the
Options.useTlcWithAccel field of the Legacy Code Tool data structure is
set to 1.

Once you have generated a dynamically loadable executable, you or others can
use it in a model by adding an S-Function block that specifies the compiled
S-function.

4-64

Integrate C Functions Using Legacy Code Tool

Generating a Masked S-Function Block for Calling
a Generated S-Function
You have the option of using the Legacy Code Tool to generate a masked
S-function block (graphical representation) that is configured to call a
generated C MEX S-function. To generate such a block, call legacy_code
with 'slblock_generate' as the first argument and the name of the Legacy
Code Tool data structure as the second argument.

legacy_code('slblock_generate', lct_spec);

The tool masks the block such that it displays the value of the OutputFcnSpec
field. You can then add the block to a model manually.

If you prefer that the Legacy Code Tool add the block to a model automatically,
specify the name of the model as a third argument. For example:

legacy_code('slblock_generate', lct_spec, 'myModel');

If the specified model (for example, myModel) exists, legacy_code opens the
model and adds the masked S-function block described by the Legacy Code
Tool data structure. If the model does not exist, the function creates a new
model with the specified name and adds the masked S-function block.

Forcing Simulink Accelerator Mode to Use S-Function
TLC Inlining Code
If you are using Simulink Accelerator mode, you can generate and force the
use of TLC inlining code for the S-function generated by the Legacy Code
Tool. To do this:

1 Generate a TLC block file for the S-function by calling the legacy_code
function with 'sfcn_tlc_generate' as the first argument and the name of
the Legacy Code Tool data structure as the second argument.

legacy_code('sfcn_tlc_generate', lct_spec);

Consider the example in “Example of Integrating Existing C Functions into
Simulink Models with the Legacy Code Tool” on page 4-51. To generate
a TLC file for the model shown at the end of that example, enter the
following command:

4-65

4 Writing S-Functions in C

legacy_code('sfcn_tlc_generate', def);

2 Force Accelerator mode to use the TLC file by using the
ssSetOptions SimStruct function to set the S-function option
SS_OPTION_USE_TLC_WITH_ACCELERATOR.

Calling Legacy C++ Functions
To call a legacy C++ function after initializing the Legacy Code Tool data
structure, assign the value ’C++’ to the Options.language field. For example,

def = legacy_code('initialize');
def.Options.language = 'C++';

To verify the new setting, enter

def.Options.language

Note The Legacy Code Tool can interface with C++ functions, but not C++
objects. For a work around, see “Legacy Code Tool Limitations” on page 4-68
in the Simulink documentation.

Handling Multiple Registration Files
You can have multiple registration files in the same folder and generate an
S-function for each file with a single call to legacy_code. Likewise, you can
use a single call to legacy_code in order to compile and link the S-functions
and another to generate corresponding TLC block files, if appropriate.

Consider the following example, where lct_register_1, lct_register_2,
and lct_register_3 each create and initialize fields of a Legacy Code Tool
structure.

defs1 = lct_register_1;
defs2 = lct_register_2;
defs3 = lct_register_3;
defs = [defs1(:);defs2(:);defs3(:)];

You can then use the following sequence of calls to legacy_code in order to
generate files based on the three registration files:

4-66

Integrate C Functions Using Legacy Code Tool

legacy_code('sfcn_cmex_generate', defs);
legacy_code('compile', defs);
legacy_code('sfcn_tlc_generate', defs);

Alternatively, you can process each registration file separately. For example:

defs1 = lct_register1;
legacy_code('sfcn_cmex_generate', defs1);
legacy_code('compile', defs1);
legacy_code('sfcn_tlc_generate', defs1);
.
.
.
defs2 = lct_register2;
legacy_code('sfcn_cmex_generate', defs2);
legacy_code('compile', defs2);
legacy_code('sfcn_tlc_generate', defs2);
.
.
.
defs3 = lct_register3;
legacy_code('sfcn_cmex_generate', defs3);
legacy_code('compile', defs3);
legacy_code('sfcn_tlc_generate', defs3);

Deploying Generated S-Functions
You can deploy the S-functions that you generate with the Legacy Code Tool
for use by others. To deploy an S-function for simulation use only, you need to
share only the compiled dynamically loadable executable.

Legacy Code Tool Examples
For examples that show applications of the Legacy Code Tool, in the MATLAB
command window, type:

demo simulink

Legacy Code Tool examples are listed in Modeling Features > Custom
Blocks with S-functions and Legacy Code Tool.

4-67

4 Writing S-Functions in C

Legacy Code Tool Limitations
Legacy Code Tool

• Generates C MEX S-functions for existing functions written in C or C++.
The tool does not support transformation of MATLAB or Fortran functions.

• Can interface with C++ functions, but not C++ objects. One way of working
around this limitation is to use the S-Function Builder to generate the shell
of an S-function and then call the legacy C++ code from the S-function’s
mdlOutputs callback function.

• Does not support simulating continuous or discrete states. This prevents
you from using the mdlUpdate and mdlDerivatives callback functions. If
your application requires this support, see “Using the S-Function Builder
to Incorporate Legacy Code” on page 2-17.

• Always sets the S-functions flag for direct feedthrough
(sizes.DirFeedthrough) to true. Due to this setting and the preceding
limitation, the generated S-function cannot break algebraic loops.

• Supports only the continuous, but fixed in minor time step, sample time
and offset option.

• Supports complex numbers, but only with Simulink built-in data types.

• Does not support use of function pointers as the output of the legacy
function being called.

• Does not support the following S-function features:

- Work vectors, other then general DWork vectors

- Frame-based input and output signals

- Port-based sample times

- Multiple block-based sample times

4-68

Simulink® Engine Interaction with C S-Functions

Simulink Engine Interaction with C S-Functions

In this section...

“Introduction” on page 4-69

“Process View” on page 4-69

“Data View” on page 4-77

Introduction
This section examines how the Simulink engine interacts with S-functions
from two perspectives:

• Process perspective, i.e., at which points in a simulation the engine
invokes the S-function.

• Data perspective, i.e., how the engine and the S-function exchange
information during a simulation.

Process View
The following figures show the order in which the Simulink engine invokes
the callback methods in an S-function. Solid rectangles indicate callbacks
that always occur during model initialization or at every time step. Dotted
rectangles indicate callbacks that may occur during initialization and/or at
some or all time steps during the simulation loop. See the documentation for
each callback method to determine the exact circumstances under which the
engine invokes the callback.

Note The process view diagram represents the execution of S-functions that
contain continuous and discrete states, enable zero-crossing detection, and
reside in a model that uses a variable-step solver. Different solvers omit
certain steps in the diagram. For a better understanding of how the Simulink
engine executes your particular S-function, run the model containing
the S-function using the Simulink debugger. For more information, see
“Introduction to the Debugger”.

4-69

4 Writing S-Functions in C

In the following model initialization loop, the Simulink engine configures
the S-function for an upcoming simulation. The engine always makes the
required calls to mdlInitializeSizes and mdlInitializeSampleTime to set
up the fundamental attributes of the S-function, including input and output
ports, S-function dialog parameters, work vectors, sample times, etc.

The engine calls additional methods, as needed, to complete the S-function
initialization. For example, if the S-function uses work vectors, the
engine calls mdlSetWorkWidths. Also, if the mdlInitializeSizes
method deferred setting up input and output port attributes, the engine
calls any methods necessary to complete the port initialization, such as
mdlSetInputPortWidth, during signal propagation. The mdlStart method
calls the mdlCheckParameters and mdlProcessParameters methods if the
S-function uses dialog parameters.

4-70

Simulink® Engine Interaction with C S-Functions

4-71

4 Writing S-Functions in C

Note The mdlInitializeSizes callback method also runs when you enter
the name of a compiled S-function into the S-Function Block Parameters
dialog box.

After initialization, the Simulink engine executes the following simulation
loop. If the simulation loop is interrupted, either manually or when an
error occurs, the engine jumps directly to the mdlTerminate method. If the
simulation was manually halted, the engine first completes the current time
step before invoking mdlTerminate.

4-72

Simulink® Engine Interaction with C S-Functions

4-73

4 Writing S-Functions in C

If your model contains multiple S-Function blocks, the engine invokes a
particular method for every S-function before proceeding to the next method.
For example, the engine calls all the mdlInitializeSizes methods before
calling any mdlInitializeSampleTimes methods. The engine uses the block
sorted order to determine the order to execute the S-functions. See “What
Is Sorted Order?” in Using Simulink to learn more about how the engine
determines the block sorted order.

Calling Structure for Code Generation
If you use the Simulink Coder product to generate code for a model containing
S-functions, the Simulink engine does not execute the entire calling sequence
outlined above. Initialization proceeds as outlined above until the engine
reaches the mdlStart method. The engine then calls the S-function methods
shown in the following figure, where the mdlRTW method is unique to the
Simulink Coder product.

If the S-function resides in a conditionally executed subsystem, it is possible
for the generated code to interleave calls to mdlInitializeConditions and
mdlStart. Consider the following Simulink model sfcndemo_enablesub.

4-74

Simulink® Engine Interaction with C S-Functions

The model contains two nonvirtual subsystems, the conditionally executed
enabled subsystem named Reset and the atomic subsystem named Atomic.
Each subsystem contains an S-Function block that calls the S-function
dsfunc.c, which models a discrete state-space system with two states. The
enabled subsystem Reset resets the state values when the subsystem is
enabled, and the output values when the subsystem is disabled.

Using the generic real-time (GRT) target, the generated code for the
model-wide Start function calls the Start functions of the two subsystems
before calling the model-wide MdlInitialize function, as shown in the
following code:

void MdlStart(void)
{

/* snip */

/* Start for enabled SubSystem: '<Root>/Reset' */
sfcndemo_enablesub_Reset_Start();

/* end of Start for SubSystem: '<Root>/Reset' */

/* Start for atomic SubSystem: '<Root>/Atomic' */
sfcndemo_enablesub_Atomic_Start();

4-75

4 Writing S-Functions in C

/* end of Start for SubSystem: '<Root>/Atomic' */

MdlInitialize();

The Start function for the enabled subsystem calls the subsystem’s
InitializeConditions function:

void sfcndemo_enablesub_Reset_Start(void)
{

sfcndemo_enablesub_Reset_Init();
/* snip */

}

The MdlInitialize function, called in MdlStart, contains a call to the
InitializeConditions function for the atomic subsystem:

void MdlInitialize(void)
{

/* InitializeConditions for atomic SubSystem:
'<Root>/Atomic' */

sfcndemo_enablesub_Atomic_Init();
}

Therefore, the model-wide Start function interleaves calls to the Start and
InitializeConditions functions for the two subsystems and the S-functions
they contain.

For more information about the Simulink Coder product and how it interacts
with S-functions, see “About S-Functions and Code Generation”.

Alternate Calling Structure for External Mode
When you are running a Simulink model in external mode, the calling
sequence for S-function routines changes as shown in the following figure.

4-76

Simulink® Engine Interaction with C S-Functions

The engine calls mdlRTW once when it enters external mode and again
each time a parameter changes or when you select Simulation > Update
Diagram.

Note Running a Simulink model in external mode requires the Simulink
Coder product.

Data View
S-function blocks have input and output signals, parameters, and internal
states, plus other general work areas. In general, block inputs and outputs
are written to, and read from, a block I/O vector. Inputs can also come from

• External inputs via the root Inport blocks

• Ground if the input signal is unconnected or grounded

Block outputs can also go to the external outputs via the root Outport blocks.
In addition to input and output signals, S-functions can have

• Continuous states

• Discrete states

• Other working areas such as real, integer, or pointer work vectors

4-77

4 Writing S-Functions in C

You can parameterize S-function blocks by passing parameters to them using
the S-Function Block Parameters dialog box.

The following figure shows the general mapping between these various types
of data.

An S-function’s mdlInitializeSizes routine sets the sizes of the various
signals and vectors. S-function methods called during the simulation loop can
determine the sizes and values of the signals.

An S-function method can access input signals in two ways:

• Via pointers

• Using contiguous inputs

Accessing Signals Using Pointers
During the simulation loop, access the input signals using

InputRealPtrsType uPtrs =
ssGetInputPortRealSignalPtrs(S,portIndex)

4-78

Simulink® Engine Interaction with C S-Functions

This returns an array of pointers for the input port with index portIndex,
where portIndex starts at 0. There is one array of pointers for each input
port. To access an element of this array you must use

*uPtrs[element]

The following figure describes how to access the input signals of an S-function
with two inputs.

As shown in the previous figure, the input array pointers can point at
noncontiguous places in memory.

You can retrieve the output signal by using this code.

real_T *y = ssGetOutputPortSignal(S,outputPortIndex);

4-79

4 Writing S-Functions in C

Accessing Contiguous Input Signals
An S-function’s mdlInitializeSizes method can specify that the elements
of its input signals must occupy contiguous areas of memory, using
ssSetInputPortRequiredContiguous. If the inputs are contiguous, other
methods can use ssGetInputPortSignal to access the inputs.

Accessing Input Signals of Individual Ports
This section describes how to access all input signals of a particular port and
write them to the output port. The preceding figure shows that the input array
of pointers can point to noncontiguous entries in the block I/O vector. The
output signals of a particular port form a contiguous vector. Therefore, the
correct way to access input elements and write them to the output elements
(assuming the input and output ports have equal widths) is to use this code.

int_T element;

int_T portWidth = ssGetInputPortWidth(S,inputPortIndex);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,inputPortIndex);

real_T *y = ssGetOutputPortSignal(S,outputPortIdx);

for (element=0; element<portWidth; element++) {

y[element] = *uPtrs[element];

}

A common mistake is to try to access the input signals via pointer arithmetic.
For example, if you were to place

real_T *u = *uPtrs; /* Incorrect */

just below the initialization of uPtrs and replace the inner part of the above
loop with

*y++ = *u++; /* Incorrect */

the code compiles, but the MEX file might crash the Simulink software.
This is because it is possible to access invalid memory (which depends on
how you build your model). When accessing the input signals incorrectly,
a crash occurs when the signals entering your S-function block are not
contiguous. Noncontiguous signal data occurs when signals pass through
virtual connection blocks such as the Mux or Selector blocks.

4-80

Simulink® Engine Interaction with C S-Functions

To verify that your S-function correctly accesses wide input signals, pass a
replicated signal to each input port of your S-function. To do this, create a
Mux block with the number of input ports equal to the width of the desired
signal entering your S-function. Then, connect the driving source to each
S-function input port, as shown in the following figure. Finally, run your
S-function using this input signal to verify that it does not crash and produces
expected results.

4-81

4 Writing S-Functions in C

Write Callback Methods
Writing an S-function basically involves creating implementations of the
callback functions that the Simulink engine invokes during a simulation. For
guidelines on implementing a particular callback, see the documentation
for the callback. For information on using callbacks to implement specific
block features, such as parameters or sample times, see “Implement Block
Features”.

4-82

S-Functions in Normal Mode Referenced Models

S-Functions in Normal Mode Referenced Models

Note For additional information, see “Model Referencing Limitations”.

When a C S-function appears in a referenced model that executes in Normal
mode, successful execution is impossible if all of the following are true:

• The S-function has both an mdlProcessParameters function and an
mdlStart function.

• The mdlProcessParameters function depends on the mdlStart function.

• The referenced model calls mdlProcessParameters before calling mdlStart.

Execution fails because mdlProcessParameters has dependency requirements
that mdlStart has not satisfied. Automated analysis cannot guard against all
possible causes of such failure: you must check your code manually and verify
that mdlProcessParameters is not in any way dependent on mdlStart being
called first. Examples of such dependency include:

• Allocating memory in mdlStart and using that memory in
mdlProcessParameters. This is often done using ssSetUserData and
ssGetUserData.

• Initializing any DWork or any global memory in mdlStart and reading the
values in mdlProcessParameters.

To remind you to check for any such dependency problems, an error message
appears by default for any S-function that is used in a Normal mode
referenced model and contains both an mdlProcessParameters function and
an mdlStart function. The error message does not mean that any dependency
problems exist, but only that they might exist.

If you get such an error message, check for any problematic dependencies
in the S-function, and recode as needed to eliminate them. When no such
dependencies exist, you can safely suppress the error message and use the
S-function in a Normal mode referenced model. To certify that the S-function
is compliant, and the message is therefore unnecessary, include the following
statement in mdlInitializeSizes:

4-83

4 Writing S-Functions in C

ssSetModelReferenceNormalModeSupport (S, MDL_START_AND_MDL_PROCESS_PARAMS_OK);

For information about referenced models, see “Overview of Model
Referencing”.

Supporting the Use of Multiple Instances of
Referenced Models That Are in Normal Mode
You may need to modify S-functions that are used by a model so that the
S-functions work with multiple instances of referenced models in Normal
mode. The S-functions must indicate explicitly that they support multiple
exec instances.

• For C S-functions, use ssSupportsMultipleExecInstances(s, true).

• For MATLAB file S-functions, use blockSupportMultipleExecInstances
= true.

The limitations for using S-functions with multiple instances of referenced
models in Normal mode are the same as the limitations that apply to using
S-functions with For Each Subsystem block.

4-84

Debug C MEX S-Functions

Debug C MEX S-Functions

In this section...

“About Debugging C MEX S-Functions” on page 4-85

“Debug in Simulink Environment” on page 4-85

“Debug Using Third-Party Software” on page 4-89

About Debugging C MEX S-Functions
This section provides high-level tips on how to debug C MEX S-functions
within the Simulink environment and using third-party software. The
following lists highlight some of the more common errors made when writing
an S-function. For a more detailed analysis, use the debugger provided with
your C compiler.

The examples at the end of this section show how to debug a C MEX
S-function during simulation, using third-party software.

• The first example uses the Microsoft Visual C++® .NET (version 7.0)
environment.

• The second example debugs an S-function on The Open Group UNIX®

platform.

Refer to your compiler documentation for further information on debugging
files.

Debug in Simulink Environment
Before you begin, make sure you have a good understanding of how to write C
S-functions and the required callback methods. For assistance:

• Read the section “Available S-Function Implementations” on page 2-2 to
determine if you implemented your S-function using the most appropriate
method.

• Use the S-Function Builder block to generate simple S-functions and study
the contents of the source files.

4-85

4 Writing S-Functions in C

• Inspect the S-function example models available in sfundemos. The folder
matlabroot/simulink/src contains the S-function source files for these
models.

If your S-function is not compiling, first ensure that the mex command is
properly configured and your S-function includes all necessary files:

• Run mex -setup to ensure that your compiler is correctly installed.

• Confirm that you are passing all the source files needed by your S-function
to the mex command.

• Check that these additional source files are on the MATLAB path.

• Make sure that your S-function includes the simstruc.h header file. If you
are accessing legacy code, make sure that any header files needed by that
code are also included in your S-function.

• Make sure that your S-function does not include the simstruc_types.h or
rtwtypes.h header files. These Simulink and Simulink Coder header files
are automatically included for you. If you are compiling your S-function as
a MEX file for simulation, including the rtwtypes.h file results in errors.

If the mex command compiles your S-function, but your S-function does not
simulate or the simulation produces incorrect results, inspect your S-function
source code to ensure that:

• You are not overwriting important memory

• You are not using any uninitialized variables

The following table describes additional common S-function constructs that
can lead to compilation and simulation errors.

4-86

Debug C MEX S-Functions

Does your S-function... Look for...

Use for loops to assign
memory?

Instances where your S-function might
inadvertently assign values outside of the array
bounds.

Use global variables? Locations in the code where the global variables
can be corrupted. If you have multiple instances
of your S-function in a model, they can write
over the same memory location.

Allocate memory? Memory your S-function does not deallocate.
Always free memory that your S-function
allocates, using the malloc and free commands
to allocate and deallocate memory, respectively.

Have direct feedthrough? An incorrect direct feedthrough flag setting
in your S-function. An S-function can access
its inputs in the mdlOutputs method only
if it specifies that the input ports have
direct feedthrough. Accessing input signals
in mdlOutputs when the input port direct
feedthrough flag is set to false leads to
indeterminate behavior. To check if you have a
direct feedthrough flag incorrectly set, you can
turn on the model property TryForcingSFcnDF
using the command

set_param(model_name,'TryForcingSFcnDF','on')

This command specifies that all S-functions
in the model model_name have a direct
feedthrough flag of true for all their input
ports. After you turn on this property, if
your simulation produces correct answers
without causing an algebraic loop, one of your
S-functions in the model potentially set an
incorrect direct feedthrough flag. Consult
the file sfuntmpl_directfeed.txt for more
information on diagnosing direct feedthrough
errors.

4-87

4 Writing S-Functions in C

Does your S-function... Look for...

Access input signals
correctly?

Instances in the code where your S-function
uses incorrect macros to access input signals,
for example when accessing a discontiguous
signal. Discontiguous signals result when an
S-function input port is fed by a Selector block
that selects every other element of a vector
signal. For discontiguous input signals, use the
following commands:

// In mdlInitializeSizes

ssSetInputPortRequiredContiguous(S, 0, 0);

// In mdlOutputs, access the inputs using

InputRealPtrsType uPtrs1 =

ssGetInputPortRealSignalPtrs(S,0);

For contiguous input signals, use the following
commands:

// In mdlInitializeSizes

ssSetInputPortRequiredContiguous(S, 0, 1);

// In mdlOutputs, access the inputs using

const real_T *u0 =

(const real_T*) ssGetInputPortSignal(S,0);

/* If ssSetInputPortRequiredContiguous is 0,

ssGetInputPortSignal returns an invalid pointer.*/

Debugging Techniques
You can use the following techniques for additional assistance with debugging
your S-function.

• Compile the S-function in debug mode using the -g option for the mex
command. This enables additional diagnostics features that are called only
when you compile your S-function in debug mode.

4-88

Debug C MEX S-Functions

• Place ssPrintf statements inside your callback methods to ensure that
they are running and that they are executing in the order you expect. Also,
use ssPrintf statements to print return values to the MATLAB command
prompt to check if your code is producing the expected results.

• Type feature memstats at the MATLAB command prompt to query the
memory usage.

• Use the MATLAB File & folder Comparisons tool, or other text differencing
application, to look for textual changes in different versions of your
S-function. This can help you locate changes that disabled an S-function
that previously compiled and ran. See “Comparing Files and Folders” for
instructions on how to use the File & folder Comparisons tool.

• Use settings on the Configuration Parameters dialog box to check for
memory problems.

- Set the Solver data inconsistency diagnostic to warning.

- Set the Array bounds exceeded diagnostic to warning or error. (See
“Checking Array Bounds” on page 8-72 for more information on how to
use this diagnostic.)

- Turn the Signal storage reuse optimization off.

• Separate the S-function’s algorithm from its Simulink interface then
use the S-Function Builder to generate a new Simulink interface for
the algorithm. The S-Function Builder ensures that the interface is
implemented in the most consistent method.

Debug Using Third-Party Software
You can debug and profile the algorithm portion of your S-function using
third-party software if you separate the algorithm from the S-function’s
Simulink interface. You cannot debug and profile the S-function’s interface
with the Simulink engine because the Simulink interface code does not ship
with the product.

You can additionally use third-party software to debug an S-function during
simulation, as shown in the following two examples. These examples use the
Simulink model sfcndemo_timestwo and the C MEX S-function timestwo.c.

4-89

4 Writing S-Functions in C

Debugging C MEX S-Functions Using the Microsoft Visual C++
.NET Environment
Before beginning the example, save the files sfcndemo_timestwo and
timestwo.c into your working folder.

1 Open the Simulink model sfcndemo_timestwo.

2 Create a version of the MEX file that you can debug by compiling the C file
using the mex command with the -g option.

mex -g timestwo.c

The -g option creates the executable timestwo.mexw32 with debugging
symbols included. At this point, you may want to simulate the
sfcndemo_timestwo model to ensure it runs properly.

3 Without exiting the MATLAB environment, start the Microsoft
Development Environment.

4 From the Microsoft Development Environment menu bar, select Tools >
Debug Processes.

5 In the Processes dialog box that opens:

a Select the MATLAB.exe process in the Available Processes list.

b Click Attach.

6 In the Attach to Process dialog box that opens:

a Select Native in the list of program types to debug.

b Click OK.

You should now be attached to the MATLAB process.

7 Click Close on the Processes dialog box.

8 From the Microsoft Development Environment File menu, select Open >
File. Select the timestwo.c source files from the file browser that opens.

9 Set a breakpoint on the desired line of code by right-clicking on the line
and selecting Insert Breakpoint from the context menu. If you have not
previously run the model, the breakpoint may show up with a question

4-90

Debug C MEX S-Functions

mark, indicating that the executable is not loaded. Subsequently running
the model loads the .mexw32 file and removes the question mark from the
breakpoint.

10 Start the simulation from the sfcndemo_timestwo Simulink model.
You should be running the S-function in the Microsoft Development
Environment and can debug the file within that environment.

Debugging C MEX S-Functions on The Open Group UNIX
Platforms
Before beginning the example, save the files sfcndemo_timestwo and
timestwo.c into your working folder.

Create a version of the MEX file for debugging:

1 Open the Simulink model sfcndemo_timestwo.

2 Create a version of the MEX file that you can debug by compiling the C file
using the mex command with the -g option:

mex -g timestwo.c

The -g option creates the executable timestwo.mexa64 with debugging
symbols included.

3 Simulate the sfcndemo_timestwo model to ensure it runs properly.

4 Exit the MATLAB environment.

Debug the MEX file:

1 Start the MATLAB environment in debugging mode using this command:

matlab -D<nameOfDebugger>

The -D flag starts the MATLAB environment within the specified debugger.
For example, to use the gdb debugging tool on the Linux® platform, enter
this command.

matlab -Dgdb

4-91

4 Writing S-Functions in C

2 Once the debugger has loaded, continue loading the MATLAB environment
by typing run at the debugger prompt (gdb).

run -nodesktop

Starting program: matlab
...

Note The debugger might stop on spurious segmentation violation signals
that result from interactions with the underlying Java® Virtual Machine
(JVM™). You can ignore these messages and continue, using the cont
command. If you are not debugging segmentation violation signals and
want to suppress these messages, enter the command handle SIGSEGV
nostop noprint pass.

3 Open the sfcndemo_timestwo Simulink model.

4 Press Ctrl+C to open the debugger.

5 At the (gdb) prompt, set breakpoints in the source code, for example:

break timestwo.c:37

Breakpoint 1 (timestwo.c:37) pending
(gdb)

6 At the (gdb) prompt, enter the cont command to continue.

cont

7 Use your debugger routines to debug the S-function. For more information,
see the gdb documentation that is part of your operating system
documentation.

4-92

Convert Level-1 C MEX S-Functions

Convert Level-1 C MEX S-Functions

In this section...

“Guidelines for Converting Level-1 C MEX S-Functions to Level-2” on page
4-93

“Obsolete Macros” on page 4-96

Guidelines for Converting Level-1 C MEX S-Functions
to Level-2
Level-2 S-functions were introduced with Simulink version 2.2. Level-1
S-functions refer to S-functions that were written to work with Simulink
version 2.1 and previous releases. Level-1 S-functions are compatible with
Simulink version 2.2 and subsequent releases; you can use them in new
models without making any code changes. However, to take advantage of
new features in S-functions, Level-1 S-functions must be updated to Level-2
S-functions. Here are some guidelines:

• Start by looking at simulink/src/sfunctmpl_doc.c. This template
S-function file concisely summarizes Level-2 S-functions.

• At the top of your S-function file, add this define:

#define S_FUNCTION_LEVEL 2

• Update the contents of mdlInitializeSizes. In particular, add the
following error handling for the number of S-function parameters:

ssSetNumSFcnParams(S, NPARAMS); /*Number of expected parameters*/

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

/* Return if number of expected != number of actual parameters */

return;

}

Set up the inputs using:

if (!ssSetNumInputPorts(S, 1)) return; /*Number of input ports */

ssSetInputPortWidth(S, 0, width); /* Width of input

port one (index 0)*/

ssSetInputPortDirectFeedThrough(S, 0, 1); /* Direct feedthrough

or port one */

4-93

4 Writing S-Functions in C

ssSetInputPortRequiredContiguous(S, 0);

Set up the outputs using:

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, width); /* Width of output port

one (index 0) */

• If your S-function has a nonempty mdlInitializeConditions, update it
to the following form:

#define MDL_INITIALIZE_CONDITIONS
static void mdlInitializeConditions(SimStruct *S)
{
}

Otherwise, delete the function.

- Access the continuous states using ssGetContStates. The ssGetXmacro
has been removed.

- Access the discrete states using ssGetRealDiscStates(S). The ssGetX
macro has been removed.

- For mixed continuous and discrete state S-functions, the state vector
no longer consists of the continuous states followed by the discrete
states. The states are saved in separate vectors and hence might not
be contiguous in memory.

• The mdlOutputs prototype has changed from

static void mdlOutputs(real_T *y, const real_T *x,
const real_T *u, SimStruct *S, int_T tid)

to

static void mdlOutputs(SimStruct *S, int_T tid)

Since y, x, and u are not explicitly passed in to Level-2 S-functions, you
must use

- ssGetInputPortSignal to access inputs

- ssGetOutputPortSignal to access the outputs

- ssGetContStates or ssGetRealDiscStates to access the states

4-94

Convert Level-1 C MEX S-Functions

• The mdlUpdate function prototype has changed from

void mdlUpdate(real_T *x, real_T *u, Simstruct *S, int_T tid)

to

void mdlUpdate(SimStruct *S, int_T tid)

• If your S-function has a nonempty mdlUpdate, update it to this form:

#define MDL_UPDATE
static void mdlUpdate(SimStruct *S, int_T tid)
{
}

Otherwise, delete the function.

• If your S-function has a nonempty mdlDerivatives, update it to this form:

#define MDL_DERIVATIVES
static void mdlDerivatives(SimStruct *S)
{
}

Otherwise, delete the function.

• Replace all obsolete SimStruct macros. See “Obsolete Macros” on page 4-96
for a complete list of obsolete macros.

• When converting Level-1 S-functions to Level-2 S-functions, you should
build your S-functions with full (i.e., highest) warning levels. For example,
if you have gcc on a UNIX1 system, use these options with the mex utility.

mex CC=gcc CFLAGS=-Wall sfcn.c

If your system has Lint, use this code.

lint -DMATLAB_MEX_FILE -I<matlabroot>/simulink/include
-Imatlabroot/extern/include sfcn.c

1. UNIX is a registered trademark of The Open Group in the United States and other
countries.

4-95

4 Writing S-Functions in C

On a PC, to use the highest warning levels, you must create a project file
inside the integrated development environment (IDE) for the compiler you
are using. Within the project file, define MATLAB_MEX_FILE and add

matlabroot/simulink/include
matlabroot/extern/include

to the path (be sure to build with alignment set to 8).

Obsolete Macros
The following macros are obsolete. Replace each obsolete macro with the
macro specified in the following table.

Obsolete Macro Replace with

ssGetU(S), ssGetUPtrs(S) ssGetInputPortSignalPtrs(S,port),
ssGetInputPortSignal(S,port)

ssGetY(S) ssGetOutputPortRealSignal(S,port)

ssGetX(S) ssGetContStates(S), ssGetRealDiscStates(S)

ssGetStatus(S) Normally not used, but ssGetErrorStatus(S) is
available.

ssSetStatus(S,msg) ssSetErrorStatus(S,msg)

ssGetSizes(S) Specific call for the wanted item (i.e.,
ssGetNumContStates(S))

ssGetMinStepSize(S) No longer supported

ssGetPresentTimeEvent(S,sti) ssGetTaskTime(S,sti)

ssGetSampleTimeEvent(S,sti) ssGetSampleTime(S,sti)

ssSetSampleTimeEvent(S,t) ssSetSampleTime(S,sti,t)

ssGetOffsetTimeEvent(S,sti) ssGetOffsetTime(S,sti)

ssSetOffsetTimeEvent(S,sti,t) ssSetOffsetTime(S,sti,t)

ssIsSampleHitEvent(S,sti,tid) ssIsSampleHit(S,sti,tid)

ssGetNumInputArgs(S) ssGetNumSFcnParams(S)

ssSetNumInputArgs(S, numInputArgs) ssSetNumSFcnParams(S,numInputArgs)

ssGetNumArgs(S) ssGetSFcnParamsCount(S)

4-96

Convert Level-1 C MEX S-Functions

Obsolete Macro Replace with

ssGetArg(S,argNum) ssGetSFcnParam(S,argNum)

ssGetNumInputs ssGetNumInputPorts(S) and
ssGetInputPortWidth(S,port)

ssSetNumInputs ssSetNumInputPorts(S,nInputPorts) and
ssSetInputPortWidth(S,port,val)

ssGetNumOutputs ssGetNumOutputPorts(S) and
ssGetOutputPortWidth(S,port)

ssSetNumOutputs ssSetNumOutputPorts(S,nOutputPorts) and
ssSetOutputPortWidth(S,port,val)

4-97

4 Writing S-Functions in C

4-98

5

Creating C++ S-Functions

The procedure for creating C++ S-functions is nearly the same as that for
creating C S-functions. The following sections explain the differences.

• “Create a C++ Source File” on page 5-2

• “Make C++ Objects Persistent” on page 5-3

• “Build C++ S-Functions” on page 5-5

• “C++ References” on page 5-6

5 Creating C++ S-Functions

Create a C++ Source File
To create a C++ S-function from a C S-function, refer to a C++ reference.
See “C++ References” on page 5-6.

In addition, set up the MEX function to use a C++ compiler (see “Build
MEX-File”)

5-2

Make C++ Objects Persistent

Make C++ Objects Persistent
Your C++ callback methods might need to create persistent C++ objects,
that is, objects that continue to exist after the method exits. For example, a
callback method might need to access an object created during a previous
invocation. Or one callback method might need to access an object created by
another callback method. To create persistent C++ objects in your S-function:

1 Create a pointer work vector to hold pointers to the persistent object
between method invocations:

static void mdlInitializeSizes(SimStruct *S)

{

...

ssSetNumPWork(S, 1); // reserve element in the pointers vector

// to store a C++ object

...

}

2 Store a pointer to each object that you want to be persistent in the pointer
work vector:

static void mdlStart(SimStruct *S)

{

ssGetPWork(S)[0] = (void *) new counter; // store new C++ object in the

} // pointers vector

3 Retrieve the pointer in any subsequent method invocation to access the
object:

static void mdlOutputs(SimStruct *S, int_T tid)

{

counter *c = (counter *) ssGetPWork(S)[0]; // retrieve C++ object from

real_T *y = ssGetOutputPortRealSignal(S,0); // the pointers vector and

y[0] = c->output(); // use member functions of

} // the object

5-3

5 Creating C++ S-Functions

4 Destroy the objects when the simulation terminates:

static void mdlTerminate(SimStruct *S)

{

counter *c = (counter *) ssGetPWork(S)[0]; // retrieve and destroy C++

delete c; // object in the termination

} // function

5-4

Build C++ S-Functions

Build C++ S-Functions
Use the mex command to build C++ S-functions exactly the way you use
it to build C S-functions. For example, to build the C++ version of the
sfun_counter_cpp.cpp file, enter

mex sfun_counter_cpp.cpp

at the MATLAB command prompt.

Note The extension of the source file for a C++ S-function must be .cpp to
ensure that the compiler treats the contents of the file as C++ code.

5-5

5 Creating C++ S-Functions

C++ References
[1] Meyers, S., More Effective C++, Boston, Addison-Wesley, 1996, Item 34

[2] Oualline, S., Practical C++ Programming, Sebastopol, California, O’Reilly,
1995, Chapter 27

[3] Stroustrup, B., The C++ Programming Language, 3rd Ed., Boston,
Addison-Wesley, 1997, Appendix B

5-6

6

Creating Fortran
S-Functions

• “Level-1 Versus Level-2 S-Functions” on page 6-2

• “Create Level-1 Fortran S-Functions” on page 6-3

• “Create Level-2 Fortran S-Functions” on page 6-8

• “Port Legacy Code” on page 6-18

6 Creating Fortran S-Functions

Level-1 Versus Level-2 S-Functions
There are two main strategies to executing Fortran code from the Simulink
software. One is from a Level-1 Fortran-MEX (F-MEX) S-function, the other
is from a Level-2 gateway S-function written in C. Each has its advantages
and both can be incorporated into code generated by the Simulink Coder
product. If you have Simulink Coder, to have complete code generation with
the software, you must inline the Fortran S-function. For more information,
see “Inlining S-Functions”.

The original S-function interface was called the Level-1 API. As the Simulink
product grew, the S-function API was rearchitected into the more extensible
Level-2 API. This allows S-functions to have all the capabilities of a full
Simulink model (except automatic algebraic loop identification and solving).

Note The Level-1 API supports creation of S-functions having only
continuous sample time. If you want to create a Fortran S-function with a
discrete sample time, you must use the Level-2 API.

For more information, see:

• “Create Level-1 Fortran S-Functions” on page 6-3

• “Create Level-2 Fortran S-Functions” on page 6-8

6-2

Create Level-1 Fortran S-Functions

Create Level-1 Fortran S-Functions

In this section...

“Fortran MEX Template File” on page 6-3

“Example of a Level-1 Fortran S-Function” on page 6-3

“Inline Code Generation Example” on page 6-6

Fortran MEX Template File
A template file for FortranMEX S-functions is located at sfuntmpl_fortran.F.
The template file compiles as is and copies the input to the output.

To use the template to create a new Fortran S-function:

1 Create a copy under another filename.

2 Edit the copy to perform the operations you need.

3 Compile the edited file into a MEX-file, using the mex command.

4 Include the MEX-file in your model, using the S-Function block.

Example of a Level-1 Fortran S-Function
The example file, sfun_timestwo_for.F, implements an S-function that
multiplies its input by 2.

C

C File: SFUN_TIMESTWO_FOR.F

C

C Abstract:

C A sample Level-1 FORTRAN representation of a

C timestwo S-function.

C

C The basic mex command for this example is:

C

C >> mex sfun_timestwo_for.F simulink.F

C

C Copyright 1990-2002 The MathWorks, Inc.

6-3

6 Creating Fortran S-Functions

C

C

C

C===

C Function: SIZES

C

C Abstract:

C Set the size vector.

C

C SIZES returns a vector which determines model

C characteristics. This vector contains the

C sizes of the state vector and other

C parameters. More precisely,

C SIZE(1) number of continuous states

C SIZE(2) number of discrete states

C SIZE(3) number of outputs

C SIZE(4) number of inputs

C SIZE(5) number of discontinuous roots in

C the system

C SIZE(6) set to 1 if the system has direct

C feedthrough of its inputs,

C otherwise 0

C

C===

C

SUBROUTINE SIZES(SIZE)

C .. Array arguments ..

INTEGER*4 SIZE(*)

C .. Parameters ..

INTEGER*4 NSIZES

PARAMETER (NSIZES=6)

SIZE(1) = 0

SIZE(2) = 0

SIZE(3) = 1

SIZE(4) = 1

SIZE(5) = 0

SIZE(6) = 1

RETURN

6-4

Create Level-1 Fortran S-Functions

END

C

C===

C

C Function: OUTPUT

C

C Abstract:

C Perform output calculations for continuous

C signals.

C

C===

C .. Parameters ..

SUBROUTINE OUTPUT(T, X, U, Y)

REAL*8 T

REAL*8 X(*), U(*), Y(*)

Y(1) = U(1) * 2.0

RETURN

END

C

C===

C

C Stubs for unused functions.

C

C===

SUBROUTINE INITCOND(X0)

REAL*8 X0(*)

C --- Nothing to do.

RETURN

END

SUBROUTINE DERIVS(T, X, U, DX)

REAL*8 T, X(*), U(*), DX(*)

C --- Nothing to do.

RETURN

END

6-5

6 Creating Fortran S-Functions

SUBROUTINE DSTATES(T, X, U, XNEW)

REAL*8 T, X(*), U(*), XNEW(*)

C --- Nothing to do.

RETURN

END

SUBROUTINE DOUTPUT(T, X, U, Y)

REAL*8 T, X(*), U(*), Y(*)

C --- Nothing to do.

RETURN

END

SUBROUTINE TSAMPL(T, X, U, TS, OFFSET)

REAL*8 T,TS,OFFSET,X(*),U(*)

C --- Nothing to do.

RETURN

END

SUBROUTINE SINGUL(T, X, U, SING)

REAL*8 T, X(*), U(*), SING(*)

C --- Nothing to do.

RETURN

END

A Level-1 S-function’s input/output is limited to using the REAL*8 data type,
(DOUBLE PRECISION), which is equivalent to a double in C. Of course, the
internal calculations can use whatever data types you need.

To see how this S-function works, enter

sfcndemo_timestwo_for

at the MATLAB command prompt and run the model.

Inline Code Generation Example
Simulink Coder users can use the sample block target
file sfun_timestwo_for.tlc to generate inlined code for

6-6

Create Level-1 Fortran S-Functions

sfcndemo_timestwo_for. If you want to learn how to inline your own Fortran
MEX-file, see “Inlining S-Functions” in the Simulink Coder documentation.

6-7

6 Creating Fortran S-Functions

Create Level-2 Fortran S-Functions

In this section...

“About Creating Level-2 Fortran S-Functions” on page 6-8

“Template File” on page 6-8

“C/Fortran Interfacing Tips” on page 6-8

“Constructing the Gateway” on page 6-13

“Example C MEX S-Function Calling Fortran Code” on page 6-16

About Creating Level-2 Fortran S-Functions
To use the features of a Level-2 S-function with Fortran code, you must
write a skeleton S-function in C that has code for interfacing to the Simulink
software and also calls your Fortran code.

Using the C MEX S-function as a gateway is quite simple if you are writing
the Fortran code from scratch. If instead you have legacy Fortran code that
exists as a standalone simulation, there is some work to be done to identify
parts of the code that need to be registered with the Simulink software,
such as identifying continuous states if you are using variable-step solvers
or getting rid of static variables if you want to have multiple copies of the
S-function in a Simulink model (see “Port Legacy Code” on page 6-18).

Template File
The file sfuntmpl_gate_fortran.c contains a template for creating a C
MEX-file S-function that invokes a Fortran subroutine in its mdlOutputs
method. It works with a simple Fortran subroutine if you modify the Fortran
subroutine name in the code. The template allocates DWork vectors to store
the data that communicates with the Fortran subroutine. See “How to Use
DWork Vectors” on page 7-7 for information on setting up DWork vectors.

C/Fortran Interfacing Tips
The following are some tips for creating the C-to-Fortran gateway S-function.

6-8

Create Level-2 Fortran S-Functions

MEX Environment
mex -setup needs to find the MATLAB, C, and the Fortran compilers, but it
can work with only one of these compilers at a time. If you change compilers,
you must run mex -setup between other mex commands.

Test the installation and setup using sample MEX-files from the MATLAB,
C, and Fortran MEX examples in matlabroot/extern/examples/mex, as
well as S-function examples.

If using a C compiler on a Microsoft Windows platform, test the mex setup
using the following commands and the example C source code file, yprime.c,
in matlabroot\extern\examples\mex.

cd([matlabroot '\extern\examples\mex'])
mex yprime.c

If using a Fortran compiler, test the mex setup using the following commands
and the example Fortran source code files, yprime.F and yprimefg.F, in
matlabroot\extern\examples\mex.

cd([matlabroot '\extern\examples\mex'])
mex yprimef.f yprimefg.f

For more information, see “Build MEX-File”.

Compiler Compatibility
Your C and Fortran compilers need to use the same object format. If you
use the compilers explicitly supported by the mex command this is not a
problem. When you use the C gateway to Fortran, it is possible to use Fortran
compilers not supported by the mex command, but only if the object file format
is compatible with the C compiler format. Common object formats include
ELF and COFF.

The compiler must also be configurable so that the caller cleans up the stack
instead of the callee. Intel® Visual Fortran (the replacement for Compaq®

Visual Fortran) has the default stack cleanup as the caller.

6-9

6 Creating Fortran S-Functions

Symbol Decorations
Symbol decorations can cause run-time errors. For example, g77 decorates
subroutine names with a trailing underscore when in its default configuration.
You can either recognize this and adjust the C function prototype or alter
the Fortran compiler’s name decoration policy via command-line switches, if
the compiler supports this. See the Fortran compiler manual about altering
symbol decoration policies.

If all else fails, use utilities such as od (octal dump) to display the symbol
names. For example, the command

od -s 2 <file>

lists strings and symbols in binary (.obj) files.

These binary utilities can be obtained for the Windows platform as well. The
MKS, Inc. company provides commercial versions of powerful utilities for The
Open Group UNIX platforms. Additional utilities can also be obtained free
on the Web. hexdump is another common program for viewing binary files.
As an example, here is the output of

od -s 2 sfun_atmos_for.o

on a Linux platform.

0000115 E¤
0000136 E¤
0000271 E¤
0000467 E¤@
0000530 E¤
0000575 E¤ E 5@
0001267 Cf VC- :C
0001323 :|.-:8¢#8 Kw6
0001353 ?333@
0001364 333
0001414 01.01
0001425 GCC: (GNU) egcs-2.91.66 19990314/
0001522 .symtab
0001532 .strtab
0001542 .shstrtab

6-10

Create Level-2 Fortran S-Functions

0001554 .text
0001562 .rel.text
0001574 .data
0001602 .bss
0001607 .note
0001615 .comment
0003071 sfun_atmos_for.for
0003101 gcc2_compiled.
0003120 rearth.0
0003131 gmr.1
0003137 htab.2
0003146 ttab.3
0003155 ptab.4
0003164 gtab.5
0003173 atmos_
0003207 exp
0003213 pow_d

Note that Atmos has been changed to atmos_, which the C program must
call to be successful.

With Visual Fortran on 32-bit Windows machines, the symbol is suppressed,
so that Atmos becomes ATMOS (no underscore).

Fortran Math Library
Fortran math library symbols might not match C math library symbols. For
example, A^B in Fortran calls library function pow_dd, which is not in the
C math library. In these cases, you must tell mex to link in the Fortran
math library. For gcc environments, these routines are usually found in
/usr/local/lib/libf2c.a, /usr/lib/libf2c.a, or equivalent.

The mex command becomes

mex -L/usr/local/lib -lf2c cmex_c_file fortran_object_file

6-11

6 Creating Fortran S-Functions

Note On a UNIX system, the -lf2c option follows the conventional UNIX
library linking syntax, where -l is the library option itself and f2c is the
unique part of the library file’s name, libf2c.a. Be sure to use the -L option
for the library search path, because -I is only followed while searching for
include files.

The f2c package can be obtained for the Windows and UNIX environments
from the Internet. The file libf2c.a is usually part of g77 distributions, or
else the file is not needed as the symbols match. In obscure cases, it must
be installed separately, but even this is not difficult once the need for it
is identified.

On 32-bit Windows machines, using Microsoft Visual C++ and Intel Visual
Fortran 10.1, this example can be compiled using the following two mex
commands. Enter each command on one line. The mex -setup C command
must be run to return to the C compiler before executing the second command.
In the second command, replace the variable IFORT_COMPILER10 with the
name of the system’s environment variable pointing to the Visual Fortran
10.1 root folder on your system.

mex -v -c fullfile(matlabroot,'toolbox','simulink','simdemos','simfeatures',

'srcFortran','sfun_atmos_sub.F'), -f fullfile(matlabroot,'bin','win32',

'mexopts','intelf10msvs2005opts.bat'))

!mex -v -L"%IFORT_COMPILER10%\IA32\LIB" -llibifcoremd -lifconsol

-lifportmd -llibmmd -llibirc sfun_atmos.c sfun_atmos_sub.obj

On 64-bit Windows machines, using Visual C++ and Visual Fortran 10.1,
this example can be compiled using the following two mex commands (each
command is on one line). The mex -setup C command must be run to
return to the C compiler before executing the second command. The variable
IFORT_COMPILER10 is the name of the system’s environment variable pointing
to the Visual Fortran 10.1 root folder and may vary on your system. Replace
matlabroot with the path name to your MATLAB root folder.

mex -v -c fullfile(matlabroot,'toolbox','simulink','simdemos','simfeatures',

'srcFortran','sfun_atmos_sub.F'), -f fullfile(matlabroot,'bin','win64','mexopts',

'intelf10msvs2005opts.bat'))

6-12

Create Level-2 Fortran S-Functions

!mex -v -L"%IFORT_COMPILER10%\EM64T\LIB" -llibifcoremd -lifconsol

-lifportmd -llibmmd -llibirc sfun_atmos.c sfun_atmos_sub.obj

CFortran
Or you can try using CFortran to create an interface. CFortran is a tool for
automated interface generation between C and Fortran modules, in either
direction. Search the Web for cfortran or visit

http://www-zeus.desy.de/~burow/cfortran/

for downloading.

Choosing a Fortran Compiler
On a Windows machine, using Visual C++ with Fortran is best done with
Visual Fortran 10.1.

For an up-to-date list of all the supported compilers, see the MathWorks
supported and compatible compiler list at:

http://www.mathworks.com/support/compilers/current_release/

s

Constructing the Gateway
The mdlInitializeSizes and mdlInitializeSampleTimes methods are
coded in C. It is unlikely that you will need to call Fortran routines from
these S-function methods. In the simplest case, the Fortran is called only
from mdlOutputs.

Simple Case
The Fortran code must at least be callable in one-step-at-a-time fashion. If
the code doesn’t have any states, it can be called from mdlOutputs and no
mdlDerivatives or mdlUpdate method is required.

6-13

http://www.mathworks.com/support/compilers/current_release/

6 Creating Fortran S-Functions

Code with States
If the code has states, you must decide whether the Fortran code can support
a variable-step solver or not. For fixed-step solver only support, the C gateway
consists of a call to the Fortran code from mdlUpdate, and outputs are cached
in an S-function DWork vector so that subsequent calls by the Simulink engine
into mdlOutputs will work properly and the Fortran code won’t be called until
the next invocation of mdlUpdate. In this case, the states in the code can be
stored however you like, typically in the work vector or as discrete states.

If instead the code needs to have continuous time states with support for
variable-step solvers, the states must be registered and stored with the engine
as doubles. You do this in mdlInitializeSizes (registering states), then the
states are retrieved and sent to the Fortran code whenever you need to execute
it. In addition, the main body of code has to be separable into a call form that
can be used by mdlDerivatives to get derivatives for the state integration
and also by the mdlOutputs and mdlUpdate methods as appropriate.

Setup Code
If there is a lengthy setup calculation, it is best to make this part of the code
separable from the one-step-at-a-time code and call it from mdlStart. This
can either be a separate SUBROUTINE called from mdlStart that communicates
with the rest of the code through COMMON blocks or argument I/O, or it can be
part of the same piece of Fortran code that is isolated by an IF-THEN-ELSE
construct. This construct can be triggered by one of the input arguments that
tells the code if it is to perform either the setup calculations or the one-step
calculations.

SUBROUTINE Versus PROGRAM
To be able to call Fortran from the Simulink software directly without
having to launch processes, etc., you must convert a Fortran PROGRAM into a
SUBROUTINE. This consists of three steps. The first is trivial; the second and
third can take a bit of examination.

1 Change the line PROGRAM to SUBROUTINE subName.

Now you can call it from C using C function syntax.

2 Identify variables that need to be inputs and outputs and put them in the
SUBROUTINE argument list or in a COMMON block.

6-14

Create Level-2 Fortran S-Functions

It is customary to strip out all hard-coded cases and output dumps. In
the Simulink environment, you want to convert inputs and outputs into
block I/O.

3 If you are converting a standalone simulation to work inside the Simulink
environment, identify the main loop of time integration and remove the
loop and, if you want the Simulink engine to integrate continuous states,
remove any time integration code. Leave time integrations in the code if
you intend to make a discrete time (sampled) S-function.

Arguments to a SUBROUTINE
Most Fortran compilers generate SUBROUTINE code that passes arguments by
reference. This means that the C code calling the Fortran code must use
only pointers in the argument list.

PROGRAM ...

becomes

SUBROUTINE somename(U, X, Y)

A SUBROUTINE never has a return value. You manage I/O by using some of the
arguments for input, the rest for output.

Arguments to a FUNCTION
A FUNCTION has a scalar return value passed by value, so a calling C program
should expect this. The argument list is passed by reference (i.e., pointers)
as in the SUBROUTINE.

If the result of a calculation is an array, then you should use a subroutine, as
a FUNCTION cannot return an array.

Interfacing to COMMON Blocks
While there are several ways for Fortran COMMON blocks to be visible to C code,
it is often recommended to use an input/output argument list to a SUBROUTINE
or FUNCTION. If the Fortran code has already been written and uses COMMON
blocks, it is a simple matter to write a small SUBROUTINE that has an
input/output argument list and copies data into and out of the COMMON block.

6-15

6 Creating Fortran S-Functions

The procedure for copying in and out of the COMMON block begins with a write
of the inputs to the COMMON block before calling the existing SUBROUTINE. The
SUBROUTINE is called, then the output values are read out of the COMMON block
and copied into the output variables just before returning.

Example C MEX S-Function Calling Fortran Code
The S-function example sfcndemo_atmos contains an example of a C MEX
S-function calling a Fortran subroutine. The Fortran subroutine Atmos
is in the file sfun_atmos_sub.F. This subroutine calculates the standard
atmosphere up to 86 kilometers. The subroutine has four arguments.

SUBROUTINE Atmos(alt, sigma, delta, theta)

The gateway C MEX S-function, sfun_atmos.c, declares the Fortran
subroutine.

/*
* Windows uses upper case for Fortran external symbols
*/

#ifdef _WIN32
#define atmos_ ATMOS
#endif

extern void atmos_(float *alt,
float *sigma,
float *delta,
float *theta);

The mdlOutputs method calls the Fortran subroutine using pass-by-reference
for the arguments.

/* call the Fortran routine using pass-by-reference */
atmos_(&falt, &fsigma, &fdelta, &ftheta);

To see this example working in the sample model sfcndemo_atmos, enter the
following command at the MATLAB command prompt.

sfcndemo_atmos

6-16

Create Level-2 Fortran S-Functions

Building Gateway C MEX S-Functions on a Windows System
On 64-bit Windows systems using Intel C++ 12.0 and Intel Visual Fortran 12,
you need to use separate commands to compile the Fortran file and then link
it to the C gateway file. Each command is on one line.

1 Run cd(matlabroot) to go to your MATLAB root.

2 Run mex -setup Fortran to select a Fortran compiler.

3 Compile the Fortran file using the following command. Enter the command
on one line.

mex -v -c toolbox/simulink/simdemos/simfeatures/srcFortran/sfun_atmos_sub.F ...

-f bin/win64/mexopts/intelf12msvs2008opts.bat

4 Run mex -setup C to select a C compiler.

5 Link the compiled Fortran subroutine to the gateway C MEX S-function
using the following command. The variable IFORT_COMPILER12 is the name
of the system’s environment variable pointing to the Visual Fortran 12 root
folder and may vary on your system.

!mex -v -L"%IFORT_COMPILER12%\IA64\LIB" -llibifcoremd -lifconsol -lifportmd -llibmmd -llibirc

toolbox\simulink\simdemos\simfeatures\srcFortran\sfun_atmos.c sfun_atmos_sub.obj

mex -v -c toolbox/simulink/simdemos/simfeatures/srcFortran/sfun_atmos_sub.F

-f bin/win64/mexopts/intelf12msvs2008opts.bat

Building Gateway C MEX S-Functions on a UNIX System
Build the gateway on a UNIX system using the command

mex sfun_atmos.c sfun_atmos_sub.o

On some UNIX systems where the C and Fortran compilers were installed
separately (or are not aware of each other), you might need to reference the
library libf2c.a. To do this, use the -lf2c flag.

If the libf2c.a library is not on the library path, you need to add the path to
the mex process explicitly with the -L command. For example:

mex -L/usr/local/lib/ -lf2c sfun_atmos.c sfun_atmos_sub.o

6-17

6 Creating Fortran S-Functions

Port Legacy Code

In this section...

“Find the States” on page 6-18

“Sample Times” on page 6-19

“Store Data” on page 6-19

“Use Flints if Needed” on page 6-19

“Considerations for Real Time” on page 6-20

Find the States
If a variable-step solver is being used, it is critical that all continuous states
are identified in the code and put into the C S-function state vector for
integration instead of being integrated by the Fortran code. Likewise, all
derivative calculations must be made available separately to be called from
the mdlDerivatives method in the C S-function. Without these steps, any
Fortran code with continuous states will not be compatible with variable-step
solvers if the S-function is registered as a continuous block with continuous
states.

Telltale signs of implicit advancement are incremented variables such as
M=M+1 or X=X+0.05. If the code has many of these constructs and you
determine that it is impractical to recode the source so as not to “ratchet
forward,” you might need to try another approach using fixed-step solvers.

If it is impractical to find all the implicit states and to separate out the
derivative calculations for the Simulink engine, another approach can be
used, but you are limited to using fixed-step solvers. The technique here is
to call the Fortran code from the mdlUpdate method so the Fortran code is
only executed once per major simulation integration step. Any block outputs
must be cached in a work vector so that mdlOutputs can be called as often
as needed and output the values from the work vector instead of calling
the Fortran routine again (causing it to inadvertently advance time). See
sfuntmpl_gate_fortran.c for an example that uses DWork vectors. See
“How to Use DWork Vectors” on page 7-7 for details on allocating data-typed
work vectors.

6-18

Port Legacy Code

Sample Times
If the Fortran code has an implicit step size in its algorithm, coefficients, etc.,
ensure that you register the proper discrete sample time in the C S-function
mdlInitializeSampleTimes method and only change the block’s output
values from the mdlUpdate method.

Store Data
If you plan to have multiple copies of this S-function used in one Simulink
model, you need to allocate storage for each copy of the S-function in the
model. The recommended approach is to use DWork vectors (see “DWork
Vector Basics” on page 7-2).

If you plan to have only one copy of the S-function in the model, DWork vectors
still provide the most advanced method for storing data. However, another
alternative is to allocate a block of memory using the malloc command and
store the pointer to that memory in a PWork vector (see “Elementary Work
Vectors” on page 7-26). In this case, you must remember to deallocate the
memory using the free command in the S-function mdlTerminate method.

Use Flints if Needed
Use flints (floating-point ints) to keep track of time. Flints (for IEEE-754
floating-point numerics) have the useful property of not accumulating
roundoff error when adding and subtracting flints. Using flint variables
in DOUBLE PRECISION storage (with integer values) avoids roundoff error
accumulation that would accumulate when floating-point numbers are added
together thousands of times.

DOUBLE PRECISION F
:
:

F = F + 1.0
TIME = 0.003 * F

This technique avoids a common pitfall in simulations.

6-19

6 Creating Fortran S-Functions

Considerations for Real Time
Since very few Fortran applications are used in a real-time environment, it is
common to come across simulation code that is incompatible with a real-time
environment. Common failures include unbounded (or large) iterations and
sporadic but time-intensive side calculations. You must deal with these
directly if you expect to run in real time.

Conversely, it is still perfectly good practice to have iterative or sporadic
calculations if the generated code is not being used for a real-time application.

6-20

7

Using Work Vectors

• “DWork Vector Basics” on page 7-2

• “Types of DWork Vectors” on page 7-5

• “How to Use DWork Vectors” on page 7-7

• “DWork Vector Examples” on page 7-15

• “Elementary Work Vectors” on page 7-26

7 Using Work Vectors

DWork Vector Basics

In this section...

“What is a DWork Vector?” on page 7-2

“Advantages of DWork Vectors” on page 7-2

“DWork Vectors and the Simulink Engine” on page 7-3

“DWork Vectors and the Simulink® Coder™ Product” on page 7-4

What is a DWork Vector?
DWork vectors are blocks of memory that an S-function asks the Simulink
engine to allocate to each instance of the S-function in a model. If multiple
instances of your S-function can occur in a model, your S-function must use
DWork vectors instead of global or static memory to store instance-specific
values of S-function variables. Otherwise, your S-function runs the risk of one
instance overwriting data needed by another instance, causing a simulation
to fail or produce incorrect results. The ability to keep track of multiple
instances of an S-function is called reentrancy.

You can create an S-function that is reentrant by using DWork vectors that
the engine manages for each particular instance of the S-function.

Advantages of DWork Vectors
DWork vectors have several advantages:

• Provide instance-specific storage for block variables

• Support floating-point, integer, pointer, and general data types

• Eliminate static and global variables

• Interact directly with the Simulink engine to perform memory allocation,
initialization, and deallocation

• Facilitate inlining the S-function during code generation

• Provide more control over how data appears in the generated code

7-2

DWork Vector Basics

Note DWork vectors are the most generalized and versatile type of
work vector and the following sections focus on their use. The Simulink
product provides additional elementary types of work vectors that support
floating-point, integer, pointer, and mode data. You can find a discussion of
these work vectors in “Elementary Work Vectors” on page 7-26.

DWork vectors provide the most flexibility for setting data types, names, etc.,
of the data in the simulation and during code generation. The following list
describes all the properties that you can set on a DWork vector:

• Data type

• Size

• Numeric type, either real or complex

• Name

• Usage type (see “Types of DWork Vectors” on page 7-5)

• Simulink Coder identifier

• Simulink Coder storage class

• Simulink Coder C type qualifier

See “How to Use DWork Vectors” on page 7-7 for instructions on how to set
these properties. The three Simulink Coder properties pertain only to code
generation and have no effect during simulation.

DWork Vectors and the Simulink Engine
A key advantage of DWork vectors is their connection to the Simulink engine.
Over the course of the simulation, the engine relieves the S-function of all
memory management tasks related to DWork vectors.

To see how this connection is useful, consider an S-function that uses a global
variable to store data. If more than one copy of the S-function exists in a
model, each instance of the S-function must carefully allocate, manipulate,
and deallocate each piece of memory it uses.

7-3

7 Using Work Vectors

In an S-function that uses DWork vectors, the engine, not the S-function,
manages the memory for the DWork vector. At the start of a simulation, the
engine allocates the memory required for each instance of the S-function
based on the size and the data type of the DWork vector contents. At the end
of the simulation, the engine automatically deallocates the memory.

Note You have no control over how the engine allocates memory for DWork
vectors during simulation. When using the Simulink Coder software, you
can use storage classes to customize the memory allocation during code
generation. See the ssSetDWorkRTWStorageClass reference page for more
information on using storage classes.

The engine also performs special tasks based on the type of DWork vector
used in the S-function. For example, it includes DWork vectors that store
discrete state information in the model-wide state vector and makes them
available during state logging.

DWork Vectors and the Simulink Coder Product
DWork vectors allow you to customize how data appears in the generated
code. When code is generated, the Simulink Coder code generator includes the
DWork vector in the data structure for the model. The DWork vector controls
the field name used in the structure. DWork vectors also control the storage
class and C type qualifier used in the generated code. See sfun_rtwdwork.c
for an example.

7-4

Types of DWork Vectors

Types of DWork Vectors
All DWork vectors are S-function memory that the Simulink engine manages.
The Simulink software supports four types of DWork vectors:

• General DWork vectors contain information of any data type.

• DState vectors contain discrete state information. Information stored in
a DState vector appears as a state in the linearized model and is available
during state logging.

• Scratch vectors contain values that do not need to persist from one time
step to the next.

• Mode vectors contain mode information, usually stored as Boolean or
integer data.

S-functions register the DWork vector type using the ssSetDWorkUsageType
macro. This macro accepts one of the four usage types described in the
following table.

DWork Usage Type Functionality

General SS_DWORK_USED_AS_DWORK Store instance specific persistent data. General
DWork vectors can also be used to store discrete
state and mode data, however the Simulink engine
will not treat this information specially. You might
choose to use a general DWork vector to store state
information if you want to avoid data logging.

DState SS_DWORK_USED_AS_DSTATE Store discrete state information. Using the DState
vector instead of ssSetNumDiscStates to store
discrete states provides more flexibility for naming
and data typing the states. The engine marks
blocks with discrete states as special during sample
time propagation. In addition, the engine makes
the data stored in the DState vector available
during data logging.

7-5

7 Using Work Vectors

DWork Usage Type Functionality

Mode SS_DWORK_USED_AS_MODE Indicate to the Simulink engine that the S-function
contains modes. The engine handles blocks with
modes specially when solving algebraic loops. In
addition, the engine updates an S-function with
modes only at major time steps. DWork mode
vectors are more efficient than standard mode work
vectors (see “Elementary Work Vectors” on page
7-26) because they can store mode information as
Boolean data. In addition, while an S-function has
only one mode work vectors, it can have multiple
DWork vectors configured to store modes.

Scratch SS_DWORK_USED_AS_SCRATCH Store memory that is not persistent, for example, a
large variable that you do not want to mark on the
stack. Scratch vectors are scoped to a particular
S-function method (for example, mdlOutputs) and
exist across a single time step. Scratch memory
can be shared across S-function blocks. The
Simulink engine attempts to minimize the amount
of memory used by scratch variables and reuses
scratch memory whenever possible.

7-6

How to Use DWork Vectors

How to Use DWork Vectors

In this section...

“Using DWork Vectors in C MEX S-Functions” on page 7-7

“DWork Vector C MEX Macros” on page 7-10

“Using DWork Vectors in Level-2 MATLAB S-Functions” on page 7-12

“Using DWork Vectors With Legacy Code” on page 7-14

Using DWork Vectors in C MEX S-Functions
The following steps show how to initialize and use DWork vectors in a C MEX
S-function. For a full list of SimStruct macros pertaining to DWork vectors,
see “DWork Vector C MEX Macros” on page 7-10.

1 In mdlInitializeSizes, specify the number of DWork vectors using the
ssSetNumDWork macro. For example, to specify that the S-function contains
two DWork vectors, use the command

ssSetNumDWork(S, 2);

Although the mdlInitializeSizes method tells the Simulink engine how
many DWork vectors the S-function will use, the engine does not allocate
memory for the DWork vectors, at this time.

An S-function can defer specifying the number of DWork vectors until all
information about the S-function inputs is available by passing the value
DYNAMICALLY_SIZED to the ssSetNumDWork macro. If an S-function defers
specifying the number of DWork vectors in mdlInitializeSizes, it must
provide a mdlSetWorkWidths method to set up the DWork vectors.

2 If the S-function does not provide an mdlSetWorkWidths method, the
mdlInitializeSizes method sets any applicable attributes for each
DWork vector. For example, the following lines initialize the widths and
data types of the DWork vectors initialized in the previous step.

ssSetDWorkWidth(S, 0, 2);
ssSetDWorkWidth(S, 1, 1);

7-7

7 Using Work Vectors

ssSetDWorkDataType(S, 0, SS_DOUBLE);
ssSetDWorkDataType(S, 1, SS_BOOLEAN);

The following table lists attributes you can set for a DWork vector and shows
an example of the macro that sets it. See ssSetDWorkRTWStorageClass for
a list of supported storage classes.

Attribute Macro

Data type ssSetDWorkDataType(S, 0, SS_DOUBLE);

Size ssSetDWorkWidth(S, 0, 2);

Name ssSetDWorkName(S, 0, "sfcnState");

Usage type ssSetDWorkUsageType(S, 0, SS_DWORK_USED_AS_DSTATE);

Numeric type, either real or
complex

ssSetDWorkComplexSignal(S, 0, COMPLEX_NO);

Simulink Coder identifier ssSetDWorkRTWIdentifier(S, 0, "Gain");

Simulink Coder storage class ssSetDWorkRTWStorageClass(S, 0, 2);

Simulink Coder C type
qualifier

ssSetDWorkRTWTypeQualifier(S, 0, "volatile");

3 In mdlStart, initialize the values of any DWork vectors that should be
set only at the beginning of the simulation. Use the ssGetDWork macro
to retrieve a pointer to each DWork vector and initialize the values. For
example, the following mdlStart method initializes the first DWork vector.

static void mdlStart(SimStruct *S)

{

real_T *x = (real_T*) ssGetDWork(S,0);

/* Initialize the first DWork vector */

x[0] = 0;

x[1] = 2;

}

The Simulink engine allocates memory for the DWork vector before calling
the mdlStart method. Because the mdlStart method is called only once at

7-8

How to Use DWork Vectors

the beginning of the simulation, do not use it for data or states that need
to be reinitialized, for example, when reenabling a disabled subsystem
containing the S-function.

4 In mdlInitializeConditions, initialize the values of any DWork vectors
that need to be reinitialized at certain points in the simulation. The engine
executes mdlInitializeConditions at the beginning of the simulation
and any time an enabled subsystem containing the S-function is reenabled.
See the mdlStart example in the previous step for the commands used
to initialize DWork vector values.

5 In mdlOutputs, mdlUpdate, etc., use the ssGetDWork macro to retrieve a
pointer to the DWork vector and use or update the DWork vector values.
For example, for a DWork vector storing two discrete states, the following
mdlOutputs and mdlUpdate methods calculate the output and update the
discrete state values.

The S-function previously defined U(element) as (*uPtrs[element]), A, B,
C, and D as the state-space matrices for a discrete state-space system.

/* Function: mdlOutputs ==

* Abstract:

* y = Cx + Du

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

if(ssGetDWorkUsageType(S, 0) == SS_DWORK_USED_AS_DSTATE) {

real_T *y = ssGetOutputPortRealSignal(S,0);

real_T *x = (real_T*) ssGetDWork(S, 0);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

UNUSED_ARG(tid); /* not used in single tasking mode */

/* y=Cx+Du */

y[0]=C[0][0]*x[0]+C[0][1]*x[1]+D[0][0]*U(0)+D[0][1]*U(1);

y[1]=C[1][0]*x[0]+C[1][1]*x[1]+D[1][0]*U(0)+D[1][1]*U(1);

}

}

7-9

7 Using Work Vectors

#define MDL_UPDATE

/* Function: mdlUpdate ===

* Abstract:

* xdot = Ax + Bu

*/

static void mdlUpdate(SimStruct *S, int_T tid)

{

real_T tempX[2] = {0.0, 0.0};

real_T *x = (real_T*) ssGetDWork(S, 0);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

UNUSED_ARG(tid); /* not used in single tasking mode */

/* xdot=Ax+Bu */

tempX[0]=A[0][0]*x[0]+A[0][1]*x[1]+B[0][0]*U(0)+B[0][1]*U(1);

tempX[1]=A[1][0]*x[0]+A[1][1]*x[1]+B[1][0]*U(0)+B[1][1]*U(1);

x[0]=tempX[0];

x[1]=tempX[1];

}

You do not have to include any code in the mdlTerminate method to deallocate
the memory used to store the DWork vector. Similarly, if you are generating
inlined code for the S-function, you do not have to write an mdlRTW method
to access the DWork vector in the TLC file. The Simulink software handles
these aspects of the DWork vector for you.

DWork Vector C MEX Macros
The following table lists the C MEX macros pertaining to DWork vectors.

Macro Description

ssSetNumDWork Specify the number of DWork
vectors.

ssGetNumDWork Query the number of DWork
vectors.

ssGetDWork Get a pointer to a specific DWork
vector.

7-10

How to Use DWork Vectors

Macro Description

ssGetDWorkComplexSignal Determine if a specific DWork
vector is real or complex.

ssGetDWorkDataType Get the data type of a DWork
vector.

ssGetDWorkName Get the name of a DWork vector.

ssGetDWorkRTWIdentifier Get the identifier used to declare
a DWork vector in the generated
code.

ssGetDWorkRTWIdentifierMustResolveToSignalObject Indicate if a DWork vector must
resolve to a Simulink.Signal
object in the MATLAB workspace.

ssGetDWorkRTWStorageClass Get the storage class of a DWork
vector.

ssGetDWorkRTWTypeQualifier Get the C type qualifier used to
declare a DWork vector in the
generated code.

ssGetDWorkUsageType Determine how a DWork vector is
used in the S-function.

ssGetDWorkUsedAsDState Determine if a DWork vector
stores discrete states.

ssGetDWorkWidth Get the size of a DWork vector.

ssSetDWorkComplexSignal Specify if the elements of a DWork
vector are real or complex.

ssSetDWorkDataType Specify the data type of a DWork
vector.

ssSetDWorkName Specify the name of a DWork
vector.

ssSetDWorkRTWIdentifier Specify the identifier used to
declare a DWork vector in the
generated code.

7-11

7 Using Work Vectors

Macro Description

ssSetDWorkRTWIdentifierMustResolveToSignalObject Specify if a DWork vector must
resolve to a Simulink.Signal
object.

ssSetDWorkRTWStorageClass Specify the storage class for a
DWork vector.

ssSetDWorkRTWTypeQualifier Specify the C type qualifier used
to declare a DWork vector in the
generated code.

ssSetDWorkUsageType Specify how a DWork vector is
used in the S-function.

ssSetDWorkUsedAsDState Specify that a DWork vector stores
discrete state values.

ssSetDWorkWidth Specify the width of a DWork
vector.

Using DWork Vectors in Level-2 MATLAB S-Functions
The following steps show how to initialize and use DWork vectors in Level-2
MATLAB S-functions. These steps use the S-function msfcn_unit_delay.m.

1 In the PostPropagationSetup method, initialize the number of DWork
vectors and the attributes of each vector. For example, the following
PostPropagationSetup callback method configures one DWork vector
used to store a discrete state.

function PostPropagationSetup(block)

%% Setup Dwork
block.NumDworks = 1;
block.Dwork(1).Name = 'x0';
block.Dwork(1).Dimensions = 1;
block.Dwork(1).DatatypeID = 0;
block.Dwork(1).Complexity = 'Real';
block.Dwork(1).UsedAsDiscState = true;

7-12

How to Use DWork Vectors

The reference pages for Simulink.BlockCompDworkData and the parent
class Simulink.BlockData list the properties you can set for Level-2
MATLAB S-function DWork vectors.

2 Initialize the DWork vector values in either the Start or
InitializeConditions methods. Use the Start method for values
that are initialized only at the beginning of the simulation. Use the
InitializeConditions method for values that need to be reinitialized
whenever a disabled subsystem containing the S-function is reenabled.

For example, the following InitializeConditions method initializes the
value of the DWork vector configured in the previous step to the value of
the first S-function dialog parameter.

function InitializeConditions(block)

%% Initialize Dwork
block.Dwork(1).Data = block.DialogPrm(1).Data;

3 In the Outputs, Update, etc. methods, use or update the DWork vector
values, as needed. For example, the following Outputs method sets the
S-function output equal to the value stored in the DWork vector. The
Update method then changes the DWork vector value to the current value
of the first S-function input port.

%% Outputs callback method
function Outputs(block)

block.OutputPort(1).Data = block.Dwork(1).Data;

%% Update callback method
function Update(block)

block.Dwork(1).Data = block.InputPort(1).Data;

7-13

7 Using Work Vectors

Note Level-2 MATLAB S-functions do not support MATLAB sparse matrices.
Therefore, you cannot assign a sparse matrix to the value of a DWork vector.
For example, the following line of code produces an error

block.Dwork(1).Data = speye(10);

where the speye command produces a sparse identity matrix.

Using DWork Vectors With Legacy Code
You can use DWork vectors to communicate with legacy code. If you have
existing code that allocates data structures in memory, store a pointer to those
data structures in a DWork vector. Your S-function can then communicate
with the legacy code via the pointer. Alternatively, for simplicity in setting up
your S-function, you can use a pointer work vector to store the pointer. See
“Elementary Work Vectors” on page 7-26 for a description of pointer work
vectors.

You can also use DWork vectors to store the state of legacy code. The template
file sfuntmpl_gate_fortran.c shows how to use DWork vectors to interact
with legacy Fortran code. The Legacy Code Tool uses DWork vectors to
maintain the states of legacy C or C++ code incorporated through the tool.
See “Integrate C Functions Using Legacy Code Tool” on page 4-48 for more
information on the Legacy Code Tool.

7-14

DWork Vector Examples

DWork Vector Examples

In this section...

“General DWork Vector” on page 7-15

“DWork Scratch Vector” on page 7-17

“DState Work Vector” on page 7-19

“DWork Mode Vector” on page 7-21

“Level-2 MATLAB S-Function DWork Vector” on page 7-24

General DWork Vector
The S-function sfun_rtwdwork.c shows how to configure a DWork
vector for use with the Simulink Coder product. The Simulink model
sfcndemo_sfun_rtwdwork uses this S-function to implement a simple
accumulator.

The following portion of the mdlInitializeSizes method initializes the
DWork vector and all code generation properties associated with it.

ssSetNumDWork(S, 1);

ssSetDWorkWidth(S, 0, 1);

ssSetDWorkDataType(S, 0, SS_DOUBLE);

/* Identifier; free any old setting and update */

id = ssGetDWorkRTWIdentifier(S, 0);

if (id != NULL) {

free(id);

}

id = malloc(80);

mxGetString(ID_PARAM(S), id, 80);

ssSetDWorkRTWIdentifier(S, 0, id);

/* Type Qualifier; free any old setting and update */

tq = ssGetDWorkRTWTypeQualifier(S, 0);

if (tq != NULL) {

free(tq);

}

7-15

7 Using Work Vectors

tq = malloc(80);

mxGetString(TQ_PARAM(S), tq, 80);

ssSetDWorkRTWTypeQualifier(S, 0, tq);

/* Storage class */

sc = ((int_T) *((real_T*) mxGetPr(SC_PARAM(S)))) - 1;

ssSetDWorkRTWStorageClass(S, 0, sc);

The S-function initializes the DWork vector in mdlInitializeConditions.

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ============================

* Abstract:

* Initialize both continuous states to zero

*/

static void mdlInitializeConditions(SimStruct *S)

{

real_T *x = (real_T*) ssGetDWork(S,0);

/* Initialize the dwork to 0 */

x[0] = 0.0;

}

The mdlOutputs method assigns the DWork vector value to the S-function
output.

/* Function: mdlOutputs ==

* Abstract:

* y = x

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

real_T *y = ssGetOutputPortRealSignal(S,0);

real_T *x = (real_T*) ssGetDWork(S,0);

/* Return the current state as the output */

y[0] = x[0];

}

The mdlUpdate method increments the DWork value by the input.

7-16

DWork Vector Examples

#define MDL_UPDATE

/* Function: mdlUpdate ==

* Abstract:

* This function is called once for every major integration

* time step. Discrete states are typically updated here, but

* this function is useful for performing any tasks that should

* only take place once per integration step.

*/

static void mdlUpdate(SimStruct *S, int_T tid)

{

real_T *x = (real_T*) ssGetDWork(S,0);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/*

* Increment the state by the input

* U is defined as U(element) (*uPtrs[element])

*/

x[0] += U(0);

}

DWork Scratch Vector
The following example uses a scratch DWork vector to store a static variable
value. The mdlInitializeSizes method configures the width and data type
of the DWork vector. The ssSetDWorkUsageType macro then specifies the
DWork vector is a scratch vector.

ssSetNumDWork(S, 1);

ssSetDWorkWidth(S, 0, 1);

ssSetDWorkDataType(S, 0, SS_DOUBLE);

ssSetDWorkUsageType(S,0, SS_DWORK_USED_AS_SCRATCH);

The remainder of the S-function uses the scratch DWork vector exactly as it
would any other type of DWork vector. The InitializeConditions method
sets the initial value and the mdlOutputs method uses the value stored in
the DWork vector.

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ================================ */

static void mdlInitializeConditions(SimStruct *S)

7-17

7 Using Work Vectors

{

real_T *x = (real_T*) ssGetDWork(S,0);

/* Initialize the dwork to 0 */

x[0] = 0.0;

}

/* Function: mdlOutputs === */

static void mdlOutputs(SimStruct *S, int_T tid)

{

real_T *y = ssGetOutputPortRealSignal(S,0);

real_T *x1 = (real_T*) ssGetDWork(S,1);

x[0] = 2000;

y[0] = x[0] * 2;

}

If you have Simulink Coder, the Simulink Coder software handles scratch
DWork differently from other DWork vectors when generating code for inlined
S-function. To inline the S-function, create the following Target Language
Compiler (TLC) file to describe the mdlOutputs method.

%implements sfun_dscratch "C"

%% Function: Outputs ==

%%

/* dscratch Block: %<Name> */

%<LibBlockDWork(DWork[0], "", "", 0)> = 2000.0;

%<LibBlockOutputSignal(0,"","",0)> = %<LibBlockDWork(DWork[0],"","", 0)> * 2;

When the Simulink Coder software generates code for the model, it inlines
the S-function and declares the second DWork vector as a local scratch vector.
For example, the model outputs function contains the following lines:

/* local scratch DWork variables */

real_T SFunction_DWORK1;

SFunction_DWORK1 = 2000.0;

If the S-function used a general DWork vector instead of a scratch DWork
vector, generating code with the same TLC file would have resulted in the
DWork vector being included in the data structure, as follows:

sfcndemo_dscratch_DWork.SFunction_DWORK1 = 2000.0;

7-18

DWork Vector Examples

DState Work Vector
This example rewrites the S-function example dsfunc.c to use a DState
vector instead of an explicit discrete state vector. The mdlInitializeSizes
macro initializes the number of discrete states as zero and, instead, initializes
one DWork vector.

The mdlInitializeSizes method then configures the DWork vector
as a DState vector using a call to ssSetDWorkUsedAsDState. This is
equivalent to calling the ssSetDWorkUsageType macro with the value
SS_DWORK_USED_AS_DSTATE. The mdlInitializeSizes method sets the
width and data type of the DState vector and gives the state a name using
ssSetDWorkName.

Note DWork vectors configured as DState vectors must be assigned a name
for the Simulink engine to register the vector as discrete states. The function
Simulink.BlockDiagram.getInitialStates(mdl) returns the assigned
name in the label field for the initial states.

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch reported by the Simulink engine */

}

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 2);

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 2);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

7-19

7 Using Work Vectors

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

ssSetNumDWork(S, 1);

ssSetDWorkUsedAsDState(S, 0, SS_DWORK_USED_AS_DSTATE);

ssSetDWorkWidth(S, 0, 2);

ssSetDWorkDataType(S, 0, SS_DOUBLE);

ssSetDWorkName(S, 0, "SfunStates");

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

The mdlInitializeConditions method initializes the DState vector values
using the pointer returned by ssGetDWork.

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ===============================

* Abstract:

* Initialize both discrete states to one.

*/

static void mdlInitializeConditions(SimStruct *S)

{

real_T *x0 = (real_T*) ssGetDWork(S, 0);

int_T lp;

for (lp=0;lp<2;lp++) {

*x0++=1.0;

}

}

The mdlOutputs method then uses the values stored in the DState vector to
compute the output of the discrete state-space equation.

/* Function: mdlOutputs ==

* Abstract:

* y = Cx + Du

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

7-20

DWork Vector Examples

real_T *y = ssGetOutputPortRealSignal(S,0);

real_T *x = (real_T*) ssGetDWork(S, 0);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

UNUSED_ARG(tid); /* not used in single tasking mode */

/* y=Cx+Du */

y[0]=C[0][0]*x[0]+C[0][1]*x[1]+D[0][0]*U(0)+D[0][1]*U(1);

y[1]=C[1][0]*x[0]+C[1][1]*x[1]+D[1][0]*U(0)+D[1][1]*U(1);

}

Finally, the mdlUpdate method updates the DState vector with new values
for the discrete states.

#define MDL_UPDATE

/* Function: mdlUpdate ==

* Abstract:

* xdot = Ax + Bu

*/

static void mdlUpdate(SimStruct *S, int_T tid)

{

real_T tempX[2] = {0.0, 0.0};

real_T *x = (real_T*) ssGetDWork(S, 0);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

UNUSED_ARG(tid); /* not used in single tasking mode */

/* xdot=Ax+Bu */

tempX[0]=A[0][0]*x[0]+A[0][1]*x[1]+B[0][0]*U(0)+B[0][1]*U(1);

tempX[1]=A[1][0]*x[0]+A[1][1]*x[1]+B[1][0]*U(0)+B[1][1]*U(1);

x[0]=tempX[0];

x[1]=tempX[1];

}

DWork Mode Vector
This example rewrites the S-function sfun_zc.c to use a DWork mode vector
instead of an explicit mode work vector (see “Elementary Work Vectors”
on page 7-26 for more information on mode work vectors). This S-function
implements an absolute value block.

7-21

7 Using Work Vectors

The mdlInitializeSizes method sets the number of DWork vectors
and zero-crossing vectors (see “Zero Crossings” on page 8-50) to
DYNAMICALLY_SIZED. The DYNAMICALLY_SIZED setting allows the Simulink
engine to defer specifying the work vector sizes until it knows the dimensions
of the input, allowing the S-function to support an input with an arbitrary
width.

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0);

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch reported by the Simulink engine */

}

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S,1)) return;

ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

ssSetNumDWork(S, 1);

ssSetNumModes(S, 0);

/* Initializes the zero-crossing and DWork vectors */

ssSetDWorkWidth(S,0,DYNAMICALLY_SIZED);

ssSetNumNonsampledZCs(S, DYNAMICALLY_SIZED);

/* Take care when specifying exception free code - see sfuntmpl_doc.c */

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

7-22

DWork Vector Examples

The Simulink engine initializes the number of zero-crossing vectors and
DWork vectors to the number of elements in the signal coming into the first
S-function input port. The engine then calls the mdlSetWorkWidths method,
which uses ssGetNumDWork to determine how many DWork vectors were
initialized and then sets the properties for each DWork vector.

#define MDL_SET_WORK_WIDTHS

static void mdlSetWorkWidths(SimStruct *S) {

int_T numdw = ssGetNumDWork(S);

int_T i;

for (i = 0; i < numdw; i++) {

ssSetDWorkUsageType(S, i, SS_DWORK_USED_AS_MODE);

ssSetDWorkDataType(S, i, SS_BOOLEAN);

ssSetDWorkComplexSignal(S, i, COMPLEX_NO);

}

}

The mdlOutputs method uses the value stored in the DWork mode vector
to determine if the output signal should be equal to the input signal or the
absolute value of the input signal.

static void mdlOutputs(SimStruct *S, int_T tid)

{

int_T i;

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

real_T *y = ssGetOutputPortRealSignal(S,0);

int_T width = ssGetOutputPortWidth(S,0);

boolean_T *mode = ssGetDWork(S,0);

UNUSED_ARG(tid); /* not used in single tasking mode */

if (ssIsMajorTimeStep(S)) {

for (i = 0; i < width; i++) {

mode[i] = (boolean_T)(*uPtrs[i] >= 0.0);

}

}

for (i = 0; i < width; i++) {

y[i] = mode[i]? (*uPtrs[i]): -(*uPtrs[i]);

7-23

7 Using Work Vectors

}

}

Level-2 MATLAB S-Function DWork Vector
The example S-function msfcn_varpulse.m models a variable width pulse
generator. The S-function uses two DWork vectors. The first DWork vector
stores the pulse width value, which is modified at every major time step in
the Update method. The second DWork vector stores the handle of the pulse
generator block in the Simulink model. The value of this DWork vector does
not change over the course of the simulation.

The PostPropagationSetup method, called DoPostPropSetup in this
S-function, sets up the two DWork vectors.

function DoPostPropSetup(block)

% Initialize the Dwork vector

block.NumDworks = 2;

% Dwork(1) stores the value of the next pulse width

block.Dwork(1).Name = 'x1';

block.Dwork(1).Dimensions = 1;

block.Dwork(1).DatatypeID = 0; % double

block.Dwork(1).Complexity = 'Real'; % real

block.Dwork(1).UsedAsDiscState = true;

% Dwork(2) stores the handle of the Pulse Geneator block

block.Dwork(2).Name = 'BlockHandle';

block.Dwork(2).Dimensions = 1;

block.Dwork(2).DatatypeID = 0; % double

block.Dwork(2).Complexity = 'Real'; % real

block.Dwork(2).UsedAsDiscState = false;

The Start method initializes the DWork vector values.

function Start(block)

% Populate the Dwork vector

block.Dwork(1).Data = 0;

7-24

DWork Vector Examples

% Obtain the Pulse Generator block handle

pulseGen = find_system(gcs,'BlockType','DiscretePulseGenerator');

blockH = get_param(pulseGen{1},'Handle');

block.Dwork(2).Data = blockH;

The Outputs method uses the handle stored in the second DWork vector to
update the pulse width of the Pulse Generator block.

function Outputs(block)

% Update the pulse width value

set_param(block.Dwork(2).Data, 'PulseWidth', num2str(block.InputPort(1).data));

The Update method then modifies the first DWork vector with the next value
for the pulse width, specified by the input signal to the S-Function block.

function Update(block)

% Store the input value in the Dwork(1)

block.Dwork(1).Data = block.InputPort(1).Data;

%endfunction

7-25

7 Using Work Vectors

Elementary Work Vectors

In this section...

“Description of Elementary Work Vector” on page 7-26

“Relationship to DWork Vectors” on page 7-26

“Using Elementary Work Vectors” on page 7-27

“Additional Work Vector Macros” on page 7-29

“Elementary Work Vector Examples” on page 7-30

Description of Elementary Work Vector
In addition to DWork vectors, the Simulink software provides a simplified set
of work vectors. In some S-functions, these elementary work vectors can
provide an easier solution than using DWork vectors:

• IWork vectors store integer data.

• Mode vectors model zero crossings or other features that require a single
mode vector.

• PWork vectors store pointers to data structures, such as those that
interface the S-function to legacy code, another software application, or a
hardware application.

• RWork vectors store floating-point (real) data.

Relationship to DWork Vectors
The following table compares each type of work vector to a DWork vector.

7-26

Elementary Work Vectors

Work
Vector Type

Comparison to DWork
Vector

How to create equivalent DWork vector

IWork IWork vectors cannot be
customized in the generated
code. Also, you are allowed
only one IWork vector.

ssSetNumDWork(S,1);
ssSetDWorkDataType(S, 0, SS_INT8);

Mode Mode vectors require more
memory than DWork vectors
since themode vector is always
stored with an integer data
type. Also, you are allowed
only one Mode vector.

ssSetNumDWork(S,1);
ssSetDWorkUsageType(S, 0,

sSS_DWORK_USED_AS_MODE);
ssSetDWorkDataType(S, 0, SS_INT8);

PWork Unlike DWork vectors, PWork
vectors cannot be named in
the generated code. Also, you
are allowed only one PWork
vector.

ssSetNumDWork(S,1);
ssSetDWorkDataType(S, 0, SS_POINTER);

The DWork vector then stores a pointer.

RWork RWork vectors cannot be
customized in the generated
code. Also, you are allowed
only one RWork vector.

ssSetNumDWork(S,1);
ssSetDWorkDataType(S, 0, SS_DOUBLE);

Using Elementary Work Vectors
The process for using elementary work vectors is similar to that for DWork
vectors (see “Using DWork Vectors in C MEX S-Functions” on page 7-7.) The
elementary work vectors have fewer properties, so the initialization process
is simpler. However, if you need to generate code for the S-function, the
S-function becomes more involved than when using DWork vectors.

The following steps show how to set up and use elementary work vectors. See
“Additional Work Vector Macros” on page 7-29 for a list of macros related to
each step in the following process.

1 In mdlInitializeSizes, specify the size of the work vectors using the
ssSetNumXWork macro, for example:

ssSetNumPWork(2);

7-27

7 Using Work Vectors

This macro indicates how many elements the work vector contains,
however, the Simulink engine does not allocate memory, at this time.

An S-function can defer specifying the length of the work vectors until all
information about the S-function inputs is available by passing the value
DYNAMICALLY_SIZED to the ssSetNumXWork macro. If an S-function defers
specifying the length of the work vectors in mdlInitializeSizes, it must
provide a mdlSetWorkWidths method to set up the work vectors.

Note If an S-function uses mdlSetWorkWidths, all work vectors used in
the S-function must be set to DYNAMICALLY_SIZED in mdlInitializeSizes,
even if the exact value is known before mdlInitializeSizes is called. The
sizes to be used by the S-function are than specified in mdlSetWorkWidths.

For an example, see sfun_dynsize.c.

2 In mdlStart, assign values to the work vectors that are initialized only at
the start of the simulation. Use the ssGetXWork macro to retrieve a pointer
to each work vector and use the pointer to initialize the work vector values.
Alternatively, use the ssGetXWorkValues to assign values to particular
elements of the work vector.

The Simulink engine calls the mdlStart method once at the beginning of
the simulation. Before calling this method, the engine allocates memory
for the work vectors. Do not use the mdlStart method for data that needs
to be reinitialized over the course of the simulation, for example, data
that needs to be reinitialized when an enabled subsystem containing the
S-function is enabled.

3 In mdlInitializeConditions, initialize the values of any work vectors
that might need to be reinitialized at certain points in the simulation.
The engine executes mdlInitializeConditions at the beginning of the
simulation and any time an enabled subsystem containing the S-function
is reenabled.

4 In mdlOutputs, mdlUpdate, etc., use the ssGetXWork macro to retrieve
a pointer to the work vector and use the pointer to access or update the
work vector values.

7-28

Elementary Work Vectors

5 Write an mdlRTW method to allow the Target Language Compiler (TLC)
to access the work vector. This step is not necessary if the S-function
uses DWork vectors. For information on writing parameter data in an
mdlRTW method, see ssWriteRTWParamSettings. For more information
on generating code using an mdlRTW method, see “Write Fully Inlined
S-Functions with mdlRTW Routine”.

Additional Work Vector Macros

Macro Description

ssSetNumRWork Specify the width of the real work vector.

ssGetNumRWork Query the width of the real work vector.

ssSetNumIWork Specify the width of the integer work vector.

ssGetNumIWork Query the width of the integer work vector.

ssSetNumPWork Specify the width of the pointer work vector.

ssGetNumPWork Query the width of the pointer work vector.

ssSetNumModes Specify the width of the mode work vector.

ssGetNumModes Query the width of the mode work vector.

ssGetIWork Get a pointer to the integer work vector.

ssGetIWorkValue Get an element of the integer work vector.

ssGetModeVector Get a pointer to the mode work vector.

ssGetModeVectorValue Get an element of the mode work vector.

ssGetPWork Get a pointer to the pointer work vector.

ssGetPworkValue Get one element from the pointer work vector.

ssGetRWork Get a pointer to the floating-point work vector.

ssGetRWorkValue Get an element of the floating-point work
vector.

ssSetIWorkValue Set the value of one element of the integer
work vector.

ssSetModeVectorValue Set the value of one element of the mode work
vector.

7-29

7 Using Work Vectors

Macro Description

ssSetPWorkValue Set the value of one element of the pointer
work vector.

ssSetRWorkValue Set the value of one element of the
floating-point work vector.

Elementary Work Vector Examples
The following sections provide examples of the four types of elementary work
vectors.

Pointer Work Vector
This example opens a file and stores the FILE pointer in the pointer work
vector.

The following statement, included in the mdlInitializeSizes function,
indicates that the pointer work vector is to contain one element.

ssSetNumPWork(S, 1) /* pointer-work vector */

The following code uses the pointer work vector to store a FILE pointer,
returned from the standard I/O function fopen.

#define MDL_START /* Change to #undef to remove function. */

#if defined(MDL_START)

static void mdlStart(real_T *x0, SimStruct *S)

{

FILE *fPtr;

void **PWork = ssGetPWork(S);

fPtr = fopen("file.data", "r");

PWork[0] = fPtr;

}

#endif /* MDL_START */

The following code retrieves the FILE pointer from the pointer work vector
and passes it to fclose in order to close the file.

static void mdlTerminate(SimStruct *S)

7-30

Elementary Work Vectors

{

if (ssGetPWork(S) != NULL) {

FILE *fPtr;

fPtr = (FILE *) ssGetPWorkValue(S,0);

if (fPtr != NULL) {

fclose(fPtr);

}

ssSetPWorkValue(S,0,NULL);

}

}

Note Although the Simulink engine handles deallocating the PWork vector,
the mdlTerminate method must always free the memory stored in the PWork
vector.

Real and Integer Work Vectors
The S-function stvctf.c uses RWork and IWork vectors to model a
time-varying continuous transfer function. For a description of this S-function,
see the example “Discontinuities in Continuous States” on page 8-129.

Mode Vector
The following example implements a switch block using a mode work vector.
The mdlInitializeSizes method configures two input ports with direct
feedthrough and one output port. The mode vector element indicates if the
signal from the first or second input port is propagated to the output. The
S-function uses one S-function parameter and a corresponding run-time
parameter to store the mode value and allow the switch to be toggled during
simulation.

static void mdlInitializeSizes(SimStruct *S)

{

/* Initialize one S-function parameter to toggle the mode value */

ssSetNumSFcnParams(S, 1);

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

/* Return if number of expected != number of actual parameters */

return;

}

7-31

7 Using Work Vectors

{

int iParam = 0;

int nParam = ssGetNumSFcnParams(S);

for (iParam = 0; iParam < nParam; iParam++)

{

ssSetSFcnParamTunable(S, iParam, SS_PRM_TUNABLE);

}

}

/* Initialize two input ports with direct feedthrough */

if (!ssSetNumInputPorts(S, 2)) return;

ssSetInputPortWidth(S, 0, 1);

ssSetInputPortWidth(S, 1, 1);

ssSetInputPortDataType(S, 0, SS_DOUBLE);

ssSetInputPortDataType(S, 1, SS_DOUBLE);

ssSetInputPortDirectFeedThrough(S, 0, 1);

ssSetInputPortDirectFeedThrough(S, 1, 1);

/* Initialize one output port */

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 1);

ssSetOutputPortDataType(S, 0, SS_DOUBLE);

/* Initialize one element in the mode vector */

ssSetNumSampleTimes(S, 1);

ssSetNumModes(S,1);

ssSetOptions(S,

SS_OPTION_WORKS_WITH_CODE_REUSE |

SS_OPTION_USE_TLC_WITH_ACCELERATOR |

SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME |

SS_OPTION_NONVOLATILE);

}

The mdlInitializeConditions method initializes the mode vector value
using the current value of the S-function dialog parameter.

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions =============================

7-32

Elementary Work Vectors

* Abstract:

* Initialize the mode vector value.

*/

static void mdlInitializeConditions(SimStruct *S)

{

int_T *mv = ssGetModeVector(S);

real_T param = mxGetScalar(ssGetSFcnParam(S,0));

mv[0] = (int_T)param;

}

The mdlProcessParameters and mdlSetWorkWidths methods initialize and
update the run-time parameter. As the simulation runs, changes to the
S-function dialog parameter are mapped to the run-time parameter.

/* Function: mdlSetWorkWidths ===

* Abstract:

* Sets the number of runtime parameters.

*/

#define MDL_SET_WORK_WIDTHS

static void mdlSetWorkWidths(SimStruct *S) {

ssSetNumRunTimeParams(S,1);

ssRegDlgParamAsRunTimeParam(S,0,0,"P1",SS_INT16);

}

/* Function: mdlProcessParameters ===

* Abstract:

* Update run-time parameters.

*/

#define MDL_PROCESS_PARAMETERS

static void mdlProcessParameters(SimStruct *S)

{

ssUpdateDlgParamAsRunTimeParam(S,0);

}

The mdlOutputsmethod updates the mode vector value with the new run-time
parameter value at every major time step. It then uses the mode vector value
to determine which input signal to pass through to the output.

static void mdlOutputs(SimStruct *S, int_T tid)

{

7-33

7 Using Work Vectors

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

InputRealPtrsType u2Ptrs = ssGetInputPortRealSignalPtrs(S,1);

real_T *y = ssGetOutputPortSignal(S,0);

int_T *mode = ssGetModeVector(S);

real_T param = mxGetScalar(ssGetSFcnParam(S,0));

if (ssIsMajorTimeStep(S)) {

mode[0] = (int_T)param;

}

if (!mode[0]) {

/* first input */

y[0] = (*uPtrs[0]);

}

if (mode[0]) {

/* second input */

y[0] = (*u2Ptrs[0]);

}

}

7-34

8

Implementing Block
Features

• “Dialog Parameters” on page 8-2

• “Run-Time Parameters” on page 8-8

• “Input and Output Ports” on page 8-18

• “Custom Data Types” on page 8-28

• “Sample Times” on page 8-32

• “Zero Crossings” on page 8-50

• “S-Function Compliance with the SimState” on page 8-54

• “Matrices in C S-Functions” on page 8-57

• “Function-Call Subsystems and S-Functions” on page 8-59

• “Sim Viewing Devices in External Mode” on page 8-65

• “Frame-Based Signals” on page 8-66

• “Error Handling” on page 8-69

• “C MEX S-Function Examples” on page 8-73

8 Implementing Block Features

Dialog Parameters

In this section...

“About Dialog Parameters” on page 8-2

“Tunable Parameters” on page 8-5

About Dialog Parameters
You can pass parameters to an S-function at the start of and during the
simulation, using the S-function parameters field of the Block Parameters
dialog box. Such parameters are called dialog box parameters to distinguish
them from run-time parameters created by the S-function to facilitate code
generation (see “Run-Time Parameters” on page 8-8).

Note You cannot use the Model Explorer, the S-function Block Parameters
dialog box, or a mask to tune the parameters of a source S-function, i.e., an
S-function that has outputs but no inputs, while a simulation is running. For
more information, see “Tunable Parameters”.

Using C S-Function Dialog Parameters
The Simulink engine stores the values of the dialog box parameters in the
S-function SimStruct structure. Use the S-function callback methods and
SimStruct macros to access and check the parameters and use them to
compute the S-function output. To use dialog parameters in your C S-function,
perform the following steps when you create the S-function:

1 Determine the order in which the parameters are to be specified in the
block’s dialog box.

2 In the mdlInitializeSizes function, use the ssSetNumSFcnParams
macro to tell the Simulink engine how many parameters the S-function
accepts. Specify S as the first argument and the number of dialog box
parameters as the second argument. If your S-function implements the
mdlCheckParameters method, the mdlInitializeSizes routine should
call mdlCheckParameters to check the validity of the initial values of

8-2

Dialog Parameters

the parameters. For example, the mdlInitializeSizes function in
sfun_runtime1.c begins with the following code.

ssSetNumSFcnParams(S, NPARAMS); /* Number of expected parameters */

#if defined(MATLAB_MEX_FILE)

if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

mdlCheckParameters(S);

if (ssGetErrorStatus(S) != NULL) {

return;

}

} else {

return; /* Parameter mismatch reported by the Simulink engine*/

}

#endif

3 Access the dialog box parameters in the S-function using the
ssGetSFcnParam macro.

Specify S as the first argument and the relative position of the parameter
in the list entered on the dialog box (0 is the first position) as the second
argument. The ssGetSFcnParam macro returns a pointer to the mxArray
containing the parameter. You can use ssGetDTypeIdFromMxArray to get the
data type of the parameter.

For example, in sfun_runtime1.c, the following #define statements at the
beginning of the S-function specify the order of three dialog box parameters
and access their values on the block’s dialog.

#define SIGNS_IDX 0

#define SIGNS_PARAM(S) ssGetSFcnParam(S,SIGNS_IDX) /* First parameter */

#define GAIN_IDX 1

#define GAIN_PARAM(S) ssGetSFcnParam(S,GAIN_IDX) /* Second parameter */

#define OUT_IDX 2

#define OUT_PARAM(S) ssGetSFcnParam(S,OUT_IDX) /* Third parameter */

When running a simulation, you must specify the parameters in the
S-Function parameters field of the S-Function Block Parameters dialog
box in the same order that you defined them in step 1. You can enter any
valid MATLAB expression as the value of a parameter, including literal

8-3

8 Implementing Block Features

values, names of workspace variables, function invocations, or arithmetic
expressions. The Simulink engine evaluates the expression and passes its
value to the S-function.

As another example, the following code is part of a device driver S-function.
Four input parameters are used: BASE_ADDRESS_PRM, GAIN_RANGE_PRM,
PROG_GAIN_PRM, and NUM_OF_CHANNELS_PRM. The code uses #define
statements at the top of the S-function to associate particular input arguments
with the parameter names.

/* Input Parameters */
#define BASE_ADDRESS_PRM(S) ssGetSFcnParam(S, 0)
#define GAIN_RANGE_PRM(S) ssGetSFcnParam(S, 1)
#define PROG_GAIN_PRM(S) ssGetSFcnParam(S, 2)
#define NUM_OF_CHANNELS_PRM(S) ssGetSFcnParam(S, 3)

When running the simulation, enter four variable names or values in the
S-function parameters field of the S-Function Block Parameters dialog box.
The first corresponds to the first expected parameter, BASE_ADDRESS_PRM(S).
The second corresponds to the next expected parameter, and so on.

The mdlInitializeSizes function contains this statement.

ssSetNumSFcnParams(S, 4);

Using Level-2 MATLAB S-Function Dialog Parameters
The Simulink engine stores Level-2 MATLAB S-function dialog parameters in
the block run-time object. To use dialog parameters in a Level-2 MATLAB
S-function, perform the following steps when you create the S-function:

1 Determine the order in which the parameters are to be specified in the
block’s dialog box.

2 In the setup method, set the run-time object’s NumDialogPrms property
to indicate to the engine how many parameters the S-function accepts,
for example:

block.NumDialogPrms = 2;

8-4

Dialog Parameters

3 Access the dialog box parameters in the S-function using the run-time
object’s DialogPrm method. The dialog parameter’s Data property stores its
current value, for example:

param1 = block.DialogPrm(1).Data;
param2 = block.DialogPrm(2).Data;

When running a simulation, you must specify the parameters in the
Parameters field of the Level-2 MATLAB S-Function Block Parameters
dialog box in the same order that you defined them in step 1.

Tunable Parameters
Dialog parameters can be either tunable or nontunable. A tunable parameter
is a parameter that a user can change while the simulation is running.

Note Dialog box parameters are tunable by default. Nevertheless, it is good
programming practice to set the tunability of every parameter, even those that
are tunable. If you enable the simulation diagnostic S-function upgrades
needed, the Simulink engine issues the diagnostic whenever it encounters an
S-function that fails to specify the tunability of all its parameters.

The mdlCheckParameters method enables you to validate changes to tunable
parameters during a simulation. The engine invokes the mdlCheckParameters
method whenever you change the values of parameters during the simulation
loop. This method should check the S-function dialog box parameters to
ensure that the changes are valid.

The optional mdlProcessParameters callback method allows an S-function
to process changes to tunable parameters. The engine invokes this method
only if valid parameter changes have occurred in the previous time step.
A typical use of this method is to perform computations that depend only
on the values of parameters and hence need to be computed only when
parameter values change. The method can cache the results of the parameter
computations in work vectors or, preferably, as run-time parameters (see
“Run-Time Parameters” on page 8-8).

8-5

8 Implementing Block Features

Using Tunable Parameters in a C S-Function
In a C S-function, use the macro ssSetSFcnParamTunable in
mdlInitializeSizes to specify the tunability of each S-function dialog box
parameter. The code below is taken from the mdlInitializeSizes function in
the example sfun_runtime1.c. The code first sets the number of S-function
dialog box parameters to three before invoking mdlCheckParameters. If the
parameter check passes, the tunability of the three S-function dialog box
parameters is specified.

ssSetNumSFcnParams(S, 3); /* Three dialog box parameters*/

#if defined(MATLAB_MEX_FILE)

if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

mdlCheckParameters(S);

if (ssGetErrorStatus(S) != NULL) {

return;

}

} else {

return; /* Parameter mismatch reported by the Simulink engine*/

}

#endif

ssSetSFcnParamTunable(S,GAIN_IDX,true); /* Tunable */

ssSetSFcnParamTunable(S,SIGNS_IDX,false); /* Not tunable */

ssSetSFcnParamTunable(S,OUT_IDX,false); /* Not tunable */

Note The S-function mdlInitializeSizes routine invokes the
mdlCheckParameters method to ensure that the initial values of the
parameters are valid.

Using Tunable Parameters in a Level-2 MATLAB S-Function
In a Level-2 MATLAB S-function, set the run-time object DialogPrmsTunable
property in the setup method to specify the tunability of each S-function
dialog box parameter. For example, the following line sets the first parameter
of an S-function with three dialog parameters to tunable, and the second
and third parameters to nontunable.

block.DialogPrmsTunable = {'Tunable','Nontunable','Nontunable'};

8-6

Dialog Parameters

Tuning Parameters in External Mode
When you tune parameters during simulation, the Simulink engine invokes
the S-function mdlCheckParameters method to validate the changes and
then the S-functions’ mdlProcessParameters method to give the S-function
a chance to process the parameters in some way. The engine also invokes
these methods when running in external mode, but it passes the unprocessed
changes to the S-function target. Thus, if it is essential that your S-function
process parameter changes, you need to create a Target Language Compiler
(TLC) file that inlines the S-function, including its parameter processing code,
during the code generation process. For information on inlining S-functions,
see “Inlining S-Functions” in the Simulink Coder Target Language Compiler
documentation.

8-7

8 Implementing Block Features

Run-Time Parameters

In this section...

“About Run-Time Parameters” on page 8-8

“Creating Run-Time Parameters” on page 8-9

“Updating Run-Time Parameters” on page 8-15

“Tuning Run-Time Parameters” on page 8-16

“Accessing Run-Time Parameters” on page 8-17

About Run-Time Parameters
You can create internal representations of external S-function dialog
box parameters called run-time parameters. Every run-time parameter
corresponds to one or more dialog box parameters and can have the same value
and data type as its corresponding external parameters or a different value
or data type. If a run-time parameter differs in value or data type from its
external counterpart, the dialog parameter is said to have been transformed
to create the run-time parameter. The value of a run-time parameter that
corresponds to multiple dialog parameters is typically a function of the values
of the dialog parameters. The Simulink engine allocates and frees storage for
run-time parameters and provides functions for updating and accessing them,
thus eliminating the need for S-functions to perform these tasks.

Run-time parameters facilitate the following kinds of S-function operations:

• Computed parameters

Often the output of a block is a function of the values of several dialog
parameters. For example, suppose a block has two parameters, the volume
and density of some object, and the output of the block is a function of the
input signal and the mass of the object. In this case, the mass can be viewed
as a third internal parameter computed from the two external parameters,
volume and density. An S-function can create a run-time parameter
corresponding to the computed weight, thereby eliminating the need to
provide special case handling for weight in the output computation. See
“Creating Run-Time Parameters from Multiple S-Function Parameters”
on page 8-11 for more information.

8-8

Run-Time Parameters

• Data type conversions

Often a block needs to change the data type of a dialog parameter to
facilitate internal processing. For example, suppose that the output of the
block is a function of the input and a dialog parameter and the input and
dialog parameter are of different data types. In this case, the S-function
can create a run-time parameter that has the same value as the dialog
parameter but has the data type of the input signal, and use the run-time
parameter in the computation of the output.

• Code generation

During code generation, the Simulink Coder product writes all run-time
parameters automatically to the model.rtw file, eliminating the need for
the S-function to perform this task via an mdlRTW method.

The sfcndemo_runtime Simulink model contains four example S-functions
that create run-time parameters.

Creating Run-Time Parameters
In a Level-2 MATLAB S-function, you create run-time parameters
associated with all the tunable dialog parameters. Use the run-time object’s
AutoRegRuntimePrms method in the PostPropagationSetup callback method
to register the block’s run-time parameters. For example:

block.AutoRegRuntimePrms;

In a C S-function, you can create run-time parameters in a number of ways.
The following sections describe different methods for creating run-time
parameters in a C S-function.

Creating Run-Time Parameters All at Once
Use the SimStruct function ssRegAllTunableParamsAsRunTimeParams in
mdlSetWorkWidths to create run-time parameters corresponding to all tunable
parameters. This function requires that you pass it an array of names, one
for each run-time parameter. The Simulink Coder product uses these names
as the names of the parameters during code generation. The S-function
sfun_runtime1.c shows how to create run-time parameters all at once.

8-9

8 Implementing Block Features

This approach to creating run-time parameters assumes that there is a
one-to-one correspondence between an S-function run-time parameters and
its tunable dialog parameters. This might not be the case. For example, an
S-function might want to use a computed parameter whose value is a function
of several dialog parameters. In such cases, the S-function might need to
create the run-time parameters individually.

Creating Run-Time Parameters Individually
To create run-time parameters individually, the S-function mdlSetWorkWidths
method should

1 Specify the number of run-time parameters it intends to use, using
ssSetNumRunTimeParams.

2 Use ssRegDlgParamAsRunTimeParam to register a run-time parameter
that corresponds to a single dialog parameter, even if there is a data type
transformation, or ssSetRunTimeParamInfo to set the attributes of a
run-time parameter that corresponds to more than one dialog parameter.

The following example uses ssRegDlgParamAsRunTimeParam and is taken
from the S-function sfun_runtime3.c. This example creates a run-time
parameter directly from the dialog parameter and with the same data type as
the first input port’s signal.

static void mdlSetWorkWidths(SimStruct *S)

{

/* Get data type of input to use for run-time parameter */

DTypeId dtId = ssGetInputPortDataType(S, 0);

/* Define name of run-time parameter */

const char_T *rtParamName = "Gain";

ssSetNumRunTimeParams(S, 1); /* One run-time parameter */

if (ssGetErrorStatus(S) != NULL) return;

ssRegDlgParamAsRunTimeParam(S, GAIN_IDX, 0, rtParamName, dtId);

}

#endif /* MDL_SET_WORK_WIDTHS */

The next example uses ssSetRunTimeParamInfo and is taken from the
S-function sfun_runtime2.c.

8-10

Run-Time Parameters

static void mdlSetWorkWidths(SimStruct *S)

{

ssParamRec p; /* Initialize an ssParamRec structure */

int dlgP = GAIN_IDX; /* Index of S-function parameter */

/* Configure run-time parameter information */

p.name = "Gain";

p.nDimensions = 2;

p.dimensions = (int_T *) mxGetDimensions(GAIN_PARAM(S));

p.dataTypeId = SS_DOUBLE;

p.complexSignal = COMPLEX_NO;

p.data = (void *)mxGetPr(GAIN_PARAM(S));

p.dataAttributes = NULL;

p.nDlgParamIndices = 1;

p.dlgParamIndices = &dlgP;

p.transformed = false;

p.outputAsMatrix = false;

/* Set number of run-time parameters */

if (!ssSetNumRunTimeParams(S, 1)) return;

/* Set run-time parameter information */

if (!ssSetRunTimeParamInfo(S, 0, &p)) return;

}

The S-function sfun_runtime2.c defines the parameters GAIN_IDX and
GAIN_PARAM as follows, prior to using these parameters in mdlSetWorkWidths.

#define GAIN_IDX 1
#define GAIN_PARAM(S) ssGetSFcnParam(S,GAIN_IDX)

Creating Run-Time Parameters from Multiple S-Function
Parameters
Use the ssSetRunTimeParamInfo function in mdlSetWorkWidths to create
run-time parameters as a function of multiple S-function parameters. For
example, consider an S-function with two S-function parameters, density and
volume. The S-function inputs a force (F) and outputs an acceleration (a). The
mdlOutputs method calculates the force using the equation F=m*a, where the
mass (m) is the product of the density and volume.

8-11

8 Implementing Block Features

The S-function sfun_runtime4.c implements this example using a single
run-time parameter to store the mass. The S-function begins by defining the
run-time parameter data type, as well as variables associated with volume
and density.

#define RUN_TIME_DATA_TYPE SS_DOUBLE

#if RUN_TIME_DATA_TYPE == SS_DOUBLE

typedef real_T RunTimeDataType;

#endif

#define VOL_IDX 0

#define VOL_PARAM(S) ssGetSFcnParam(S,VOL_IDX)

#define DEN_IDX 1

#define DEN_PARAM(S) ssGetSFcnParam(S,DEN_IDX)

The mdlSetWorkWidths method then initializes the run-time parameter, as
follows.

static void mdlSetWorkWidths(SimStruct *S)

{

ssParamRec p; /* Initialize an ssParamRec structure */

int dlg[2]; /* Stores dialog indices */

real_T vol = *mxGetPr(VOL_PARAM(S));

real_T den = *mxGetPr(DEN_PARAM(S));

RunTimeDataType *mass;

/* Initialize dimensions for the run-time parameter as a

* local variable. The Simulink engine makes a copy of this

* information to store in the run-time parameter. */

int_T massDims[2] = {1,1};

/* Allocate memory for the run-time parameter data. The S-function

* owns this memory location. The Simulink engine does not copy the data.*/

if ((mass=(RunTimeDataType*)malloc(1)) == NULL) {

ssSetErrorStatus(S,"Memory allocation error");

return;

}

/* Store the pointer to the memory location in the S-function

* userdata. Since the S-function owns this data, it needs to

8-12

Run-Time Parameters

* free the memory during mdlTerminate */

ssSetUserData(S, (void*)mass);

/* Call a local function to initialize the run-time

* parameter data. The Simulink engine checks that the data is not

* empty so an initial value must be stored. */

calcMass(mass, vol, den);

/* Specify mass as a function of two S-function dialog parameters */

dlg[0] = VOL_IDX;

dlg[1] = DEN_IDX;

/* Configure run-time parameter information. */

p.name = "Mass";

p.nDimensions = 2;

p.dimensions = massDims;

p.dataTypeId = RUN_TIME_DATA_TYPE;

p.complexSignal = COMPLEX_NO;

p.data = mass;

p.dataAttributes = NULL;

p.nDlgParamIndices = 2;

p.dlgParamIndices = &dlg

p.transformed = RTPARAM_TRANSFORMED;

p.outputAsMatrix = false;

/* Set number of run-time parameters */

if (!ssSetNumRunTimeParams(S, 1)) return;

/* Set run-time parameter information */

if (!ssSetRunTimeParamInfo(S,0,&p)) return;

}

The local function calcMass updates the run-time parameter value in
mdlSetWorkWidths and in mdlProcessParameters, when the values of
density or volume are tuned.

/* Function: calcMass ==

* Abstract:

* Local function to calculate the mass as a function of volume

8-13

8 Implementing Block Features

* and density.

*/

static void calcMass(RunTimeDataType *mass, real_T vol, real_T den)

{

*mass = vol * den;

}

The mdlOutputs method uses the stored mass to calculate the force.

/* Function: mdlOutputs ==

* Abstract:

*

* Output acceleration calculated as input force divided by mass.

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

real_T *y1 = ssGetOutputPortRealSignal(S,0);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

RunTimeDataType *mass =

(RunTimeDataType *)((ssGetRunTimeParamInfo(S,0))->data);

/*

* Output acceleration = force / mass

*/

y1[0] = (*uPtrs[0]) / *mass;

}

Lastly, the mdlTerminate method frees the memory allocated for the run-time
parameter in mdlSetWorkWidths.

/* Function: mdlTerminate ==

* Abstract:

* Free the user data.

*/

static void mdlTerminate(SimStruct *S)

{

/* Free memory used to store the run-time parameter data*/

RunTimeDataType *mass = ssGetUserData(S);

if (mass != NULL) {

free(mass);

8-14

Run-Time Parameters

}

}

To run the example, open the Simulink model:

sfcndemo_runtime

Updating Run-Time Parameters
Whenever you change the values of S-function dialog parameters during
simulation, the Simulink engine invokes the S-function mdlCheckParameters
method to validate the changes. If the changes are valid, the engine invokes
the S-function mdlProcessParameters method at the beginning of the next
time step. This method should update the S-function run-time parameters to
reflect the changes in the dialog parameters.

In a Level-2 MATLAB S-function, update the run-time parameters using
the AutoUpdateRuntimePrms method in the ProcessParameters callback
method. For example:

block.AutoUpdateRuntimePrms;

In a C S-function, update the run-time parameters using the method
appropriate for how the run-time parameters were created, as described in
the following sections.

Updating All Parameters at Once
In a C MEX S-function, if there is a one-to-one correspondence
between the S-function tunable dialog parameters and the run-time
parameters, i.e., the run-time parameters were registered using
ssRegAllTunableParamsAsRunTimeParams, the S-function can use the
SimStruct function ssUpdateAllTunableParamsAsRunTimeParams to accomplish
this task. This function updates each run-time parameter to have the same
value as the corresponding dialog parameter. See sfun_runtime1.c for an
example.

Updating Parameters Individually
If there is not a one-to-one correspondence between the S-function dialog and
run-time parameters or the run-time parameters are transformed versions
of the dialog parameters, the mdlProcessParameters method must update

8-15

8 Implementing Block Features

each parameter individually. Choose the method used to update the run-time
parameter based on how it was registered.

If you register a run-time parameter using ssSetRunTimeParamInfo, the
mdlProcessParameters method uses ssUpdateRunTimeParamData to update
the run-time parameter, as shown in sfun_runtime2.c. This function
updates the data field in the parameter’s attributes record, ssParamRec, with
a new value. You cannot directly modify the ssParamRec, even though you
can obtain a pointer to the ssParamRec using ssGetRunTimeParamInfo.

If you register a run-time parameter using ssRegDlgParamAsRunTimeParam,
the mdlProcessParameters method uses ssUpdateDlgParamAsRunTimeParam
to update the run-time parameter, as is shown in sfun_runtime3.c.

Updating Parameters as Functions of Multiple S-Function
Parameters
If you register a run-time parameter as a function of multiple
S-function parameters, the mdlProcessParameters method uses
ssUpdateRunTimeParamData to update the run-time parameter.

The S-function sfun_runtime4.c provides an example. In this example, the
mdlProcessParameters method calculates a new value for the run-time
parameter and passes the value to the pointer of the run-time parameter’s
memory location, which was allocated during the call to mdlSetWorkWidths.
The mdlProcessParameters method then passes the updated run-time
parameter’s pointer to ssUpdateRunTimeParamData.

Tuning Run-Time Parameters
Tuning a dialog parameter tunes the corresponding run-time parameter
during simulation and in code generated only if the dialog parameter meets
the following conditions:

• The S-function marks the dialog parameter as tunable, using
ssSetSFcnParamTunable.

• The dialog parameter is a MATLAB array of values with a data type
supported by the Simulink product.

8-16

Run-Time Parameters

Note that you cannot tune a run-time parameter whose value is a cell array
or structure.

Accessing Run-Time Parameters
You can easily access run-time parameters from the S-function code. In order
to access run-time parameter data, choose one of the following methods based
on the data type.

• If the data is of type double:

real_T *dataPtr = (real_T *) ssGetRunTimeParamInfo(S, #)->data;

• If the parameter is complex, the real and imaginary parts of the data are
interleaved. For example, if a user enters the following:

K = [1+2i, 3+4i; 5+6i, 7+8i]

the matrix that is generated is

K =
1+2i 3+4i
5+6i 7+8i

The memory for this matrix is laid out as

[1, 2, 5, 6, 3, 4, 7, 8]

To access a complex run-time parameter from the S-function code:

for (i = 0; i<width; i++)
{
real_T realData = dataPtr[(2*i)];
real_T imagData = dataPtr[(2*i)+1];
}

Note Matrix elements are written out in column-major format. Real and
imaginary values are interleaved.

8-17

8 Implementing Block Features

Input and Output Ports

In this section...

“Creating Input Ports for C S-Functions” on page 8-18

“Creating Input Ports for Level-2 MATLAB S-Functions” on page 8-22

“Creating Output Ports for C S-Functions” on page 8-24

“Creating Output Ports for Level-2 MATLAB S-Functions” on page 8-25

“Scalar Expansion of Inputs” on page 8-25

“Masked Multiport S-Functions” on page 8-27

Creating Input Ports for C S-Functions
To create and configure input ports, the mdlInitializeSizes method should
first specify the number of S-function input ports, using ssSetNumInputPorts.
Then, for each input port, the method should specify

• The dimensions of the input port (see “Initializing Input Port Dimensions”
on page 8-19)

If you want your S-function to inherit its dimensionality from the port
to which it is connected, you should specify that the port is dynamically
sized in mdlInitializeSizes (see “Sizing an Input Port Dynamically” on
page 8-20).

• Whether the input port allows scalar expansion of inputs (see “Scalar
Expansion of Inputs” on page 8-25)

• Whether the input port has direct feedthrough, using
ssSetInputPortDirectFeedThrough

A port has direct feedthrough if the input is used in either the mdlOutputs
or mdlGetTimeOfNextVarHit functions. The direct feedthrough flag for
each input port can be set to either 1=yes or 0=no. It should be set to 1
if the input, u, is used in the mdlOutputs or mdlGetTimeOfNextVarHit
routine. Setting the direct feedthrough flag to 0 tells the Simulink engine
that u is not used in either of these S-function routines. Violating this
leads to unpredictable results.

• The data type of the input port, if not the default double

8-18

Input and Output Ports

Use ssSetInputPortDataType to set the input port’s data type. If you want
the data type of the port to depend on the data type of the port to which
it is connected, specify the data type as DYNAMICALLY_TYPED. In this case,
you must provide implementations of the mdlSetInputPortDataType and
mdlSetDefaultPortDataTypes methods to enable the data type to be set
correctly during signal propagation.

• The numeric type of the input port, if the port accepts complex-valued
signals

Use ssSetInputPortComplexSignal to set the input port’s numeric type.
If you want the numeric type of the port to depend on the numeric
type of the port to which it is connected, specify the numeric type as
COMPLEX_INHERITED. In this case, you must provide implementations of
the mdlSetInputPortComplexSignal and mdlSetDefaultPortComplexSignals
methods to enable the numeric type to be set correctly during signal
propagation.

You can configure additional input port properties using other S-function
macros. See “Input and Output Ports” on page 10-7 in the “SimStruct Macros
and Functions Listed by Usage” section for more information.

Note The mdlInitializeSizes method must specify the number of ports
before setting any properties. If it attempts to set a property of a port that
doesn’t exist, it is accessing invalid memory and a segmentation violation
occurs.

Initializing Input Port Dimensions
You can set input port dimensions using one of the following macros:

• If the input signal must be one-dimensional and the input port width
is w, use

ssSetInputPortWidth(S, inputPortIdx, w)

• If the input signal must be a matrix of dimension m-by-n, use

ssSetInputPortMatrixDimensions(S, inputPortIdx, m, n)

8-19

8 Implementing Block Features

• Otherwise, if the input signal can have either one or two dimensions, use

ssSetInputPortDimensionInfo(S, inputPortIdx, dimsInfo)

You can use this function to fully or partially initialize the port dimensions
(see next section).

Sizing an Input Port Dynamically
If your S-function does not require that its input signals have specific
dimensions, you can set the dimensionality of the input ports to match the
dimensionality of the signals connected to them.

To dynamically dimension an input port:

• Specify some or all of the dimensions of the input port as dynamically sized
in mdlInitializeSizes.

If the input port can accept a signal of any dimensionality, use

ssSetInputPortDimensionInfo(S, inputPortIdx, DYNAMIC_DIMENSION)

to set the dimensionality of the input port.

If the input port can accept only vector (1-D) signals but the signals can be
of any size, use

ssSetInputPortWidth(S, inputPortIdx, DYNAMICALLY_SIZED)

to specify the dimensionality of the input port.

If the input port can accept only matrix signals but can accept any row or
column size, use

ssSetInputPortMatrixDimensions(S, inputPortIdx,
DYNAMICALLY_SIZED, DYNAMICALLY_SIZED)

• Provide an mdlSetInputPortDimensionInfo method that sets the dimensions
of the input port to the size of the signal connected to it.

The Simulink engine invokes this method during signal propagation when
it has determined the dimensionality of the signal connected to the input
port.

8-20

Input and Output Ports

• Provide an mdlSetDefaultPortDimensionInfo method that sets the
dimensions of the block’s ports to a default value. See sfun_dynsize.c for
an example that implements this macro.

The engine invokes this method during signal propagation when it cannot
determine the dimensionality of the signal connected to some or all of
the block’s input ports. This can happen, for example, if an input port is
unconnected. If the S-function does not provide this method, the signal
propagation routine sets the dimension of the block’s ports to 1-D scalar.

Example: Defining Multiple S-Function Input Ports
The following code in mdlInitializeSizes configures an S-function with two
input ports. See “Input and Output Ports” on page 10-7 in the “SimStruct
Macros and Functions Listed by Usage” section for more information on the
macros used in this example.

if (!ssSetNumInputPorts(S, 2)) return;

for (i = 0; i < 2; i++) {
/* Input has direct feedthrough */
ssSetInputPortDirectFeedThrough(S, i, 1);

/* Input supports frames:
Requires a DSP System Toolbox license*/

ssSetInputPortFrameData(S, i, FRAME_YES);

/* Input is a real signal */
ssSetInputPortComplexSignal(S, i, COMPLEX_NO);

/* Input is a dynamically sized 2-D matrix */
ssSetInputPortMatrixDimensions(S ,i,

DYNAMICALLY_SIZED, DYNAMICALLY_SIZED);

/* Input inherits its sample time */
ssSetInputPortSampleTime(S, i,INHERITED_SAMPLE_TIME);

/* Input signal must be contiguous */
ssSetInputPortRequiredContiguous(S, i, 1);

/* The input port cannot share memory */

8-21

8 Implementing Block Features

ssSetInputPortOverWritable(S, i, 0);
}

During signal propagation, the Simulink engine calls this S-function’s
mdlSetInputPortDimensionInfo macro to initialize the input port
dimensions. In this example, mdlSetInputPortDimensionInfo sets the input
dimensions to the candidate dimensions passed to the macro by the engine.

#if defined(MATLAB_MEX_FILE)
#define MDL_SET_INPUT_PORT_DIMENSION_INFO
static void mdlSetInputPortDimensionInfo(SimStruct *S,

int_T port,
const DimsInfo_T *dimsInfo)

{
if(!ssSetInputPortDimensionInfo(S, port, dimsInfo)) return;

}
#endif

For an example that configures an S-function with multiple input and output
ports, open the Simulink model sfcndemo_sfun_multiport and inspect the
S-function sfun_multiport.c.

Creating Input Ports for Level-2 MATLAB S-Functions
To create and configure input ports, the setup method should first specify the
number of S-function input ports, using the run-time object NumInputPorts
property. Next, if all input ports inherit their functional properties (data type,
dimensions, complexity, and sampling mode) from their input signals, include
the following line in the setup method:

block.SetPreCompInpPortInfoToDynamic;

Then, for each input port, the setup method can specify

• The dimensions of the input port, using block.InputPort(n).Dimensions.

To individually specify that an input port’s dimensions are dynamically
sized, assign a value of -1 to the dimensions. In this case, you can
implement the SetInputPortDimensions method to set the dimensions
during signal propagation.

8-22

Input and Output Ports

• Whether the input port has direct feedthrough, using
block.InputPort(n).DirectFeedthrough.

A port has direct feedthrough if the input is used in the Outputs functions
to calculate either the outputs or the next sample time hit. The direct
feedthrough flag for each input port can be set to either 1=yes or 0=no.
Setting the direct feedthrough flag to 0 tells the Simulink engine that u is
not used to calculate the outputs or next sample time hit. Violating this
leads to unpredictable results.

• The data type of the input port, using block.InputPort(n).DatatypeID.
See the explanation for the “DatatypeID” property in the
Simulink.BlockData data object reference page for a list of valid data
type IDs.

If you want the data type of the port to depend on the data type of the
port to which it is connected, specify the data type as -1. In this case, you
can implement the SetInputPortDataType method to set the data type
during signal propagation.

• The numeric type of the input port, if the port accepts complex-valued
signals, using block.InputPort(n).Complexity.

If you want the numeric type of the port to depend on the numeric type of
the port to which it is connected, specify the numeric type as 'Inherited'.
In this case, you can implement the SetInputPortComplexSignal method
to set the numeric type during signal propagation.

• The sampling mode of the input port, using
block.InputPort(n).SamplingMode.

If you want the sampling mode of the port to depend on the
sampling mode of the port to which it is connected, specify the
sampling mode as 'Inherited'. In this case, you can implement the
SetInputPortComplexSignal method to set the sampling mode during
signal propagation. If your S-function has multiple output ports, you must
implement the SetInputPortComplexSignal method if any of the ports
has an inherited sampling mode.

For an example that configures a Level-2 MATLAB S-function with multiple
input and output ports, open the model sldemo_msfcn_lms and inspect the
S-function adapt_lms.m.

8-23

8 Implementing Block Features

Creating Output Ports for C S-Functions
To create and configure output ports, the mdlInitializeSizes method
should first specify the number of S-function output ports, using
ssSetNumOutputPorts. Then, for each output port, the method should specify

• Dimensions of the output port

You can set output port dimensions using one of the following macros:

- ssSetOutputPortDimensionInfo

- ssSetOutputPortMatrixDimensions

- ssSetOutputPortVectorDimension

- ssSetOutputPortWidth

If you want the port’s dimensions to depend on block connectivity,
set the dimensions to DYNAMIC_DIMENSIONS when using
ssSetOutputPortDimensionInfo or to DYNAMICALLY_SIZED for all other
macros. The S-function must then provide mdlSetOutputPortDimensionInfo
and mdlSetDefaultPortDimensionInfo methods to ensure that output port
dimensions are set to the correct values in code generation.

• Data type of the output port

Use ssSetOutputPortDataType to set the output port’s data type. If
you want the data type of the port to depend on block connectivity,
specify the data type as DYNAMICALLY_TYPED. In this case, you
must provide implementations of the mdlSetOutputPortDataType and
mdlSetDefaultPortDataTypes methods to enable the data type to be set
correctly during signal propagation.

• The numeric type of the output port, if the port outputs complex-valued
signals

Use ssSetOutputPortComplexSignal to set the output port’s numeric
type. If you want the numeric type of the port to depend on the numeric
type of the port to which it is connected, specify the numeric type as
COMPLEX_INHERITED. In this case, you must provide implementations of the
mdlSetOutputPortComplexSignal and mdlSetDefaultPortComplexSignals
methods to enable the numeric type to be set correctly during signal
propagation.

8-24

Input and Output Ports

See “Creating Input Ports for C S-Functions” on page 8-18 for an example
showing how to initialize an S-function input port. You use the same
procedure to initialize the S-function output ports, but with the corresponding
output port macro.

Creating Output Ports for Level-2 MATLAB S-Functions
To create output ports for Level-2 MATLAB S-functions the setup method
should first specify the number of S-function output ports, using the run-time
object NumOutputPorts property. Next, if all output ports inherit their
functional properties (data type, dimensions, complexity, and sampling mode),
include the following line in the setup method:

block.SetPreCompOutPortInfoToDynamic;

Configure the output ports exactly as you configure input ports. See “Creating
Input Ports for Level-2 MATLAB S-Functions” on page 8-22 for a list of
properties you can specify for each output port, substituting OutputPort for
InputPort in each call to the run-time object.

Scalar Expansion of Inputs
Scalar expansion of inputs refers conceptually to the process of expanding
scalar input signals to the same dimensions as wide input signals connected
to other S-function input ports. This is done by setting each element of the
expanded signal to the value of the scalar input.

• A Level-2 MATLAB S-function uses the default scalar expansion rules if
the input and output ports are specified as dynamically sized (see “Scalar
Expansion of Inputs and Parameters” in Using Simulink).

• A C MEX S-function’s mdlInitializeSizes method
enables scalar expansion of inputs by setting the
SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION option, using ssSetOptions.

With scalar expansion on, the S-function mdlInitializeSizes method should
specify that the input and output ports are dynamically sized. The Simulink
engine uses a default method to set the dimensions of the input and output
ports. If the block has more than two inputs, the input signals can be scalar or
wide signals, where the wide signals all have the same number of elements.
In this case, the engine sets the dimensions of the output ports to the width

8-25

8 Implementing Block Features

of the wide input signals and expands any scalar inputs to this width. If the
wide inputs are driven by 1-D and 2-D vectors, the output is a 2-D vector
signal, and the scalar inputs are expanded to a 2-D vector signal.

If scalar expansion is not on, the engine assumes that all ports (input and
output ports) must have the same dimensions, and it sets all port dimensions
to the same dimensions specified by one of the driving blocks.

Note The engine ignores the scalar expansion option if the S-function specifies
or controls the dimensions of its input and output ports either by initializing
the dimensions in mdlInitializeSizes, using mdlSetInputPortWidth
and mdlSetOutputPortWidth, or using mdlSetInputPortDimensionInfo,
mdlSetOutputPortDimensionInfo, and mdlSetDefaultPortDimensionInfo.

The best way to understand how to use scalar expansion is to consider the
example sfcndemo_sfun_multiport. This model contains three S-function
blocks, each with multiple input ports. The S-function sfun_multiport.c
used in these blocks sets the SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION
option in its mdlInitializeSizes method, allowing scalar expansion of the
inputs. The S-function specifies that its inputs and outputs are dynamically
sized. Therefore, during signal propagation, the engine sets the width of the
input ports to the width of the signal connected to the port, and the width
of the output ports to the width of any wide input signal. The mdlOutputs
method performs an element-by-element sum on the input signals, expanding
any scalar inputs, as needed.

/* Calculate an element-by-element sum of the input signals.
yWidth is the width of the output signal. */

for (el = 0; el < yWidth; el++) {

int_T port;
real_T sum = 0.0;
for (port = 0; port < nInputPorts; port++) {

/* Get the input signal value */
InputRealPtrsType uPtrs =

ssGetInputPortRealSignalPtrs(S,port);

8-26

Input and Output Ports

if (el < ssGetInputPortWidth(S,port)) {
/* Input is a wide signal. Use specific element */
sum = sum + ((real_T)signs[port] * (*uPtrs[el]));

} else {
/* Use the scalar value to expand the signal */
sum = sum + ((real_T)signs[port] * (*uPtrs[0]));

}
}

}

Masked Multiport S-Functions
If you are developing masked multiport S-function blocks whose number of
ports varies based on some parameter, and want to place them in a Simulink
library, you must specify that the mask modifies the appearance of the block.
To do this, execute the command

set_param(blockname,'MaskSelfModifiable','on')

at the MATLAB command prompt before saving the library, where blockname
is the full path to the block. Failure to specify that the mask modifies the
appearance of the block means that an instance of the block in a model reverts
to the number of ports in the library whenever you load the model or update
the library link.

8-27

8 Implementing Block Features

Custom Data Types

In this section...

“Custom Data Types in C S-Functions” on page 8-28

“Using Simulink Recognizable Data Types in C S-Functions” on page 8-28

“Using Opaque Data Types in C S-Functions” on page 8-29

“Using Custom Data Types in Level-2 MATLAB S-Functions” on page 8-30

Custom Data Types in C S-Functions
C S-Functions can communicate using user-defined data types. There are two
broad categories for these data types:

• Simulink recognizable custom data types — These are custom data types
from a Simulink.AliasType, Simulink.Bus, Simulink.NumericType, or
an Enumerated data type that can also interact with other Simulink blocks.

• Opaque data types — These are data types for use only with S-Function
blocks programmed to understand them. You might define opaque data
types in cases in which other Simulink blocks do not need to use the data
types.

Using Simulink Recognizable Data Types in C
S-Functions
To register a custom data type recognizable by Simulink, the S-function
mdlInitializeSizes routine must register the data type, using
ssRegisterTypeFromNamedObject.

For example, the following code placed at the beginning of
mdlInitializeSizes defines a custom data type from a Simulink.AliasType
object named u8 in the MATLAB workspace. The example then assigns the
custom data type to the first output port.

int id1;
ssRegisterTypeFromNamedObject(S, "u8", &id1);
ssSetOutputPortDataType(S, 0, id1);

8-28

Custom Data Types

In addition, you can use the identifier id1 to assign this data type to
S-function parameters, DWork vectors, and input ports.

Using Opaque Data Types in C S-Functions
For cases in which S-Functions need to communicate using a data type that
cannot be understood by Simulink, the S-function mdlInitializeSizes
routine must:

1 Register the data type, using ssRegisterDataType.

2 Specify the amount of memory in bytes required to store an instance of the
data type, using ssSetDataTypeSize.

3 Specify the value that represents zero for the data type, using
ssSetDataTypeZero.

Define the user-defined data type in an external header file to include in the
level 2 C S-Function.

/* Define the structure of the user-defined data type */
typedef struct{

int8_T a;
uint16_T b;

}myStruct;

Place the following code at the beginning of mdlInitializeSizes to set the
size and zero representation of the custom data type myStruct.

/* Define variables */
int_T status;
DTypeId id;

myStruct tmp;

/* Register the user-defined data types */
id = ssRegisterDataType(S, "myStruct");
if(id == INVALID_DTYPE_ID) return;

/* Set the size of the user-defined data type */
status = ssSetDataTypeSize(S, id, sizeof(tmp));

8-29

8 Implementing Block Features

if(status == 0) return;

/* Set the zero representation */
tmp.a = 0;
tmp.b = 1;
status = ssSetDataTypeZero(S, id, &tmp);

Note If you have Simulink Coder, you cannot use the software to generate
code for S-functions that contain macros to define custom data types. You
must use an inline S-function that accesses Target Language Compiler
functions to generate code with custom data types. For more information,
see “Inlining S-Functions”.

Using Custom Data Types in Level-2 MATLAB
S-Functions
Level-2 MATLAB S-functions do not support defining custom data types
within the S-function. However, input and output ports can inherit their data
types from a Simulink.NumericType or Simulink.AliasType. For example,
the S-function in the following model inherits its input data type from the
Constant block:

The Constant block’s Output data type field contains the value MyDouble,
which is a Simulink.NumericType defined in the MATLAB workspace with
the following lines of code:

MyDouble = Simulink.NumericType;
MyDouble.IsAlias = 1;

The input and output ports of the Level-2 MATLAB S-function
msfcn_inheritdt.m inherit their data types. When the Simulink engine

8-30

Custom Data Types

performs data type propagation, it assigns the data type MyDouble to these
ports.

You can define a fixed-point data type within a Level-2 MATLAB S-function,
using one of the following three methods:

• RegisterDataTypeFxpBinaryPoint registers a fixed-point data type with
binary point-only scaling

• RegisterDataTypeFxpFSlopeFixExpBias registers a fixed-point data
type with [Slope Bias] scaling specified in terms of fractional slope, fixed
exponent, and bias

• RegisterDataTypeFxpSlopeBias registers a data type with [Slope Bias]
scaling

Note If the registered data type is not one of the Simulink built-in data types,
you must have a Fixed-Point Designer™ license.

If you have Fixed-Point Designer, inspect the example models and S-functions
provided with the software for examples using the macros for defining
fixed-point data types.

8-31

8 Implementing Block Features

Sample Times

In this section...

“About Sample Times” on page 8-32

“Block-Based Sample Times” on page 8-33

“Specifying Port-Based Sample Times” on page 8-37

“Hybrid Block-Based and Port-Based Sample Times” on page 8-43

“Multirate S-Function Blocks” on page 8-44

“Multirate S-Functions and Sample Time Hit Calculations” on page 8-46

“Synchronizing Multirate S-Function Blocks” on page 8-46

“Specifying Model Reference Sample Time Inheritance” on page 8-47

About Sample Times
You can specify the sample-time behavior of your S-functions in
mdlInitializeSampleTimes. Your S-function can inherit its rates from the
blocks that drive it or define its own rates.

You can specify your S-function rates (i.e., sample times) as

• Block-based sample times

• Port-based sample times

• Hybrid block-based and port-based sample times

With block-based sample times, the S-function specifies a set of operating
rates for the block as a whole during the initialization phase of the simulation.
With port-based sample times, the S-function specifies a sample time for
each input and output port individually during initialization. During the
simulation phase, with block-based sample times, the S-function processes all
inputs and outputs each time a sample hit occurs for the block. By contrast,
with port-based sample times, the block processes a particular port only when
a sample hit occurs for that port.

For example, consider two sample rates, 0.5 and 0.25 seconds, respectively:

8-32

Sample Times

• In the block-based method, selecting 0.5 and 0.25 directs the block to
execute inputs and outputs at 0.25 second increments.

• In the port-based method, setting the input port to 0.5 and the output port
to 0.25 causes the block to process inputs at 2 Hz and outputs at 4 Hz.

You should use port-based sample times if your application requires unequal
sample rates for input and output execution or if you do not want the overhead
associated with running input and output ports at the highest sample rate
of your block.

In some applications, an S-Function block might need to operate internally
at one or more sample rates while inputting or outputting signals at other
rates. The hybrid block- and port-based method of specifying sample rates
allows you to create such blocks.

In typical applications, you specify only one block-based sample time.
Advanced S-functions might require the specification of port-based or multiple
block sample times.

Block-Based Sample Times
Level-2 MATLAB S-functions specify block-based sample times in their setup
method. Use the line

block.SampleTimes = [sampleTime offsetTime];

to specify the sample time. Use a value of [-1 0] to indicate an inherited
sample time. See “Specify Sample Time” in Using Simulink for a complete list
of valid sample times.

C MEX S-functions specify block-based sample time information in

• mdlInitializeSizes

• mdlInitializeSampleTimes

The next two sections discuss how to specify block-based sample times for
C MEX S-functions. A third section presents a simple example that shows
how to specify sample times in mdlInitializeSampleTimes. For a detailed
example, see mixedm.c.

8-33

8 Implementing Block Features

Specifying the Number of Sample Times in mdlInitializeSizes
To configure your S-function for block-based sample times, use

ssSetNumSampleTimes(S,numSampleTimes);

where numSampleTimes > 0. This tells the Simulink engine that
your S-function has block-based sample times. the engine calls
mdlInitializeSampleTimes, which in turn sets the sample times.

Setting Sample Times and Specifying Function Calls in
mdlInitializeSampleTimes
mdlInitializeSampleTimes specifies two pieces of execution information:

• Sample and offset times — In mdlInitializeSampleTimes, you must
specify the sampling period and offset for each sample time using
ssSetSampleTime and ssSetOffsetTime. If applicable, you can calculate
the appropriate sampling period and offset prior to setting them, for
example, by computing the best sample time for the block based on the
S-function dialog parameters obtained using ssGetSFcnParam.

• Function calls — In mdlInitializeSampleTimes, use
ssSetCallSystemOutput to specify the output elements that are
performing function calls. Seesfun_fcncall.c for an example and
“Function-Call Subsystems and S-Functions” on page 8-59 for an
explanation of this S-function.

You specify the sample times as pairs [sample_time, offset_time], using
these macros

ssSetSampleTime(S, sampleTimePairIndex, sample_time)
ssSetOffsetTime(S, offsetTimePairIndex, offset_time)

where sampleTimePairIndex and offsetTimePairIndex starts at 0.

The valid sample time pairs are (uppercase values are macros defined in
simstruc.h):

[CONTINUOUS_SAMPLE_TIME, 0.0]
[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
[discrete_sample_period, offset]

8-34

Sample Times

[VARIABLE_SAMPLE_TIME , 0.0]

Alternatively, you can specify that the sample time is inherited from the
driving block, in which case the S-function can have only one sample time pair,

[INHERITED_SAMPLE_TIME, 0.0]

or

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

Note If your S-function inherits its sample time, you should specify whether
it is safe to use the S-function in a referenced model, i.e., a model referenced
by another model. See “Specifying Model Reference Sample Time Inheritance”
on page 8-47 for more information.

The following guidelines might help in specifying sample times:

• A continuous function that changes during minor integration steps should
register the [CONTINUOUS_SAMPLE_TIME, 0.0] sample time.

• A continuous function that does not change during minor
integration steps should register the [CONTINUOUS_SAMPLE_TIME,
FIXED_IN_MINOR_STEP_OFFSET] sample time.

• A discrete function that changes at a specified rate should register the
discrete sample time pair

[discrete_sample_period, offset]

where

discrete_sample_period > 0.0

and

0.0 <= offset < discrete_sample_period

8-35

8 Implementing Block Features

• A discrete function that changes at a variable rate should register the
variable-step discrete [VARIABLE_SAMPLE_TIME, 0.0] sample time. In C
MEX S-functions, the mdlGetTimeOfNextVarHit function is called to get
the time of the next sample hit for the variable-step discrete task. The
VARIABLE_SAMPLE_TIME can be used with variable-step solvers only.

If your function has no intrinsic sample time, you must indicate that it is
inherited according to the following guidelines:

• A function that changes as its input changes, even during minor integration
steps, should register the [INHERITED_SAMPLE_TIME, 0.0] sample time.

• A function that changes as its input changes, but doesn’t change during
minor integration steps (meaning, is held during minor steps), should
register the [INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
sample time.

To check for a sample hit during execution (in mdlOutputs or mdlUpdate), use
the ssIsSampleHit or ssIsContinuousTask macro. For example, use the
following code fragment to check for a continuous sample hit:

if (ssIsContinuousTask(S,tid)) {
}

To determine whether the third (discrete) task has a hit, use the following
code fragment:

if (ssIsSampleHit(S,2,tid) {
}

The Simulink engine always assigns an index of 0 to the continuous
sample rate, if it exists, however you get incorrect results if you use
ssIsSampleHit(S,0,tid).

Example: mdlInitializeSampleTimes
This example specifies that there are two discrete sample times with periods
of 0.01 and 0.5 seconds.

static void mdlInitializeSampleTimes(SimStruct *S)
{

8-36

Sample Times

ssSetSampleTime(S, 0, 0.01);
ssSetOffsetTime(S, 0, 0.0);
ssSetSampleTime(S, 1, 0.5);
ssSetOffsetTime(S, 1, 0.0);

} /* End of mdlInitializeSampleTimes. */

Specifying Port-Based Sample Times
Port-based sample times cannot be used with S-functions that have neither
input ports nor output ports. If an S-function uses port-based sample times
and has no ports, the S-function produces errors when the Simulink model
is updated or run. If the number of input or output ports on an S-function is
variable, extra protection should be added into the S-function to ensure the
total number of ports does not go to zero.

To use port-based sample times in a Level-2 MATLAB S-function:

• Specify the sample and offset times for each S-function port in the setup
method. For example:

block.InputPort(1).SampleTime = [-1 0];
block.OutputPort(1).SampleTime = [-1 0];

The setup method should not specify a sample time for the block when
using port-based sample times.

• Provide SetInputPortSampleTime and SetOutputPortSampleTime
methods, even if your S-function does not inherit its port-based sample
times.

To use port-based sample times in your C MEX S-function, you must
specify the number of sample times as port-based in the S-function
mdlInitializeSizes method:

ssSetNumSampleTimes(S, PORT_BASED_SAMPLE_TIMES)

You must also specify the sample time of each input and output port in the
S-function mdlInitializeSizes method, using the following macros

ssSetInputPortSampleTime(S, idx, period)
ssSetInputPortOffsetTime(S, idx, offset)
ssSetOutputPortSampleTime(S, idx, period)

8-37

8 Implementing Block Features

ssSetOutputPortOffsetTime(S, idx, offset)

Note mdlInitializeSizes should not contain any ssSetSampleTime or
ssSetOffsetTime calls when you use port-based sample times.

The call to ssSetNumSampleTimes can be placed before or after the port-based
sample times are actually specified in mdlInitializeSizes. However, if
ssSetNumSampleTimes does not configure the S-function to use port-based
sample times, any sample times set on the ports will be ignored.

For any given port, you can specify

• A specific sample time and period

For example, the following code sets the sample time of the S-function first
input port to 0.1 and the offset time to 0.

ssSetInputPortSampleTime(S, 0, 0.1);
ssSetInputPortOffsetTime(S, 0, 0);

• Inherited sample time, i.e., the port inherits its sample time from the
port to which it is connected (see “Specifying Inherited Sample Time for a
Port” on page 8-38)

• Constant sample time, i.e., the port’s input or output never changes (see
“Specifying Constant Sample Time for a Port” on page 8-39)

Note To be usable in a triggered subsystem, all of your S-function ports
must have either inherited or constant sample time (see “Configuring
Port-Based Sample Times for Use in Triggered Subsystems” on page 8-41).

Specifying Inherited Sample Time for a Port
In a Level-2 MATLAB S-function, use a value of [-1 0] for the SampleTime
property of each port to specify that the port inherits its sample time.

8-38

Sample Times

To specify that a port’s sample time is inherited in a C MEX S-function, the
mdlInitializeSizes method should set its period to -1 and its offset to 0.
For example, the following code specifies inherited sample time for a C MEX
S-function first input port:

ssSetInputPortSampleTime(S, 0, -1);
ssSetInputPortOffsetTime(S, 0, 0);

When you specify port-based sample times, the Simulink engine calls
mdlSetInputPortSampleTime and mdlSetOutputPortSampleTime to
determine the rates of inherited signals.

Once all rates have been determined, the engine calls
mdlInitializeSampleTimes. Even though there is no need to
initialize port-based sample times at this point, the engine invokes this
method to give your S-function an opportunity to configure function-call
connections. Your S-function must thus provide an implementation for this
method regardless of whether it uses port-based sample times or function-call
connections. Although you can provide an empty implementation, you might
want to use it to check the appropriateness of the sample times that the block
inherited during sample time propagation. Use ssGetInputPortSampleTime
and ssGetOutputPortSampleTime in mdlInitializeSampleTimes to obtain
the values of the inherited sample times. For example, the following code in
mdlInitializeSampleTimes checks if the S-function first input inherited a
continuous sample time.

if (!ssGetInputPortSampleTime(S,0)) {

ssSetErrorStatus(S,"Cannot inherit a continuous sample time.")

};

Note If you specify that your S-function ports inherit their sample time, you
should also specify whether it is safe to use the S-function in a referenced
model, i.e., a model referenced by another model. See “Specifying Model
Reference Sample Time Inheritance” on page 8-47 for more information.

Specifying Constant Sample Time for a Port
If your S-function uses port-based sample times, it can specify that any of
its ports has a constant sample time. This means that the signal entering

8-39

8 Implementing Block Features

or leaving the port never changes from its initial value at the start of the
simulation.

In a Level-2 MATLAB S-function, use the following line of code to specify
a constant port-based sample time:

block.OutputPort(1).SampleTime = [inf 0];

The Simulink engine determines if a constant sample time is valid during
sample-time propagation.

For C MEX S-functions, before specifying a constant sample time for an
output port whose output depends on the S-function parameters, the
S-function should use ssGetInlineParameters to check whether the Inline
parameters option on the Model Configuration Parameters dialog box >
Optimization> Signal and Parameters pane is on (see the “Optimization
Pane: Signals and Parameters”reference page in Simulink Graphical User
Interface). If this option is not selected, you can change the values the
S-function parameters and hence its outputs during the simulation. In this
case, the S-function can not specify a constant sample time for any ports
whose outputs depend on the S-function parameters.

To specify constant sample time for a port, the S-function must perform the
following tasks

• Use ssSetOptions to tell the Simulink engine that it supports constant
port sample times in its mdlInitializeSizes method:

ssSetOptions(S, SS_OPTION_ALLOW_CONSTANT_PORT_SAMPLE_TIME);

Note By setting this option, your S-function is telling the engine that all
of its ports support a constant sample time, including ports that inherit
their sample times from other blocks. If any of the S-function inherited
sample time ports cannot have a constant sample time, your S-function
mdlSetInputPortSampleTime and mdlSetOutputPortSampleTime methods
must check whether that port has inherited a constant sample time. If the
port has inherited a constant sample time, your S-function should throw
an error.

8-40

Sample Times

• Set the port’s period to inf and its offset to 0, e.g.,

ssSetInputPortSampleTime(S, 0, mxGetInf());
ssSetInputPortOffsetTime(S, 0, 0);

• Check in mdlOutputs whether the method’s tid argument equals
CONSTANT_TID and if so, set the value of the port’s output if it is an output
port.

See sfun_port_constant.c, the source file for the sfcndemo_port_constant
example, for an example of how to create ports with a constant sample time.

Configuring Port-Based Sample Times for Use in Triggered
Subsystems
Level-2 MATLAB S-functions with port-based sample times cannot be placed
in a triggered subsystem. You must modify your S-function to use block-based
sample times if you need to include it in a triggered subsystem.

To use a C MEX S-function in a triggered subsystem, your port-based sample
time S-function must perform the following tasks.

• Use ssSetOptions in the mdlInitializeSizes method to indicate the
S-function can run in a triggered subsystem:

ssSetOptions(S,
SS_OPTION_ALLOW_PORT_SAMPLE_TIME_IN_TRIGSS);

• Set all of its ports to have either inherited or constant sample time in its
mdlInitializeSizes method.

• Handle inheritance of a triggered sample time in
mdlSetInputPortSampleTime and mdlSetOutputPortSampleTime methods
as follows.

Since the S-function ports inherit their sample times, the
Simulink engine invokes either mdlSetInputPortSampleTime or
mdlSetOutputPortSampleTime during sample time propagation. The
macro ssSampleAndOffsetAreTriggered can be used in these methods
to determine if the S-function resides in a triggered subsystem. If the
S-function does reside in a triggered subsystem, whichever method is called

8-41

8 Implementing Block Features

must set the sample time and offset of the port for which it is called to
INHERITED_SAMPLE_TIME (-1).

Setting a port’s sample time and offset both to INHERITED_SAMPLE_TIME
indicates that the sample time of the port is triggered, i.e., it produces an
output or accepts an input only when the subsystem in which it resides is
triggered. The method must then also set the sample times and offsets of
all of the other S-function input and output ports to have either triggered
or constant sample time, whichever is appropriate, e.g.,

static void mdlSetInputPortSampleTime(SimStruct *S,

int_T portIdx,

real_T sampleTime

real_T offsetTime)

{

/* If the S-function resides in a triggered subsystem,

the sample time and offset passed to this method

are both equal to INHERITED_SAMPLE_TIME. Therefore,

if triggered, the following lines set the sample time

and offset of the input port to INHERITED_SAMPLE_TIME.*/

ssSetInputPortSampleTime(S, portIdx, sampleTime);

ssSetInputPortOffsetTime(S, portIdx, offsetTime);

/* If triggered, set the output port to inherited, as well */

if (ssSampleAndOffsetAreTriggered(sampleTime,offsetTime)) {

ssSetOutputPortSampleTime(S, 0, INHERITED_SAMPLE_TIME);

ssSetOutputPortOffsetTime(S, 0, INHERITED_SAMPLE_TIME);

/* Note, if there are additional input and output ports

on this S-function, they should be set to either

inherited or constant at this point, as well. */

}

}

There is no way for an S-function residing in a triggered subsystem to
predict whether the Simulink engine will call mdlSetInputPortSampleTime
or mdlSetOutputPortSampleTime to set its port sample times. For this
reason, both methods must be able to set the sample times of all ports
correctly so the engine has to call only one of the methods a single time.

8-42

Sample Times

• In mdlUpdate and mdlOutputs, use
ssGetPortBasedSampleTimeBlockIsTriggered to check whether the
S-function resides in a triggered subsystem and if so, use appropriate
algorithms for computing its states and outputs.

See sfun_port_triggered.c, the source file for the
sfcndemo_port_triggered example model, for an example of how to create
an S-function that can be used in a triggered subsystem.

Hybrid Block-Based and Port-Based Sample Times
The hybrid method of assigning sample times combines the block-based and
port-based methods. You first specify, in mdlInitializeSizes, the total
number of rates at which your block operates, including both block and input
and output rates, using ssSetNumSampleTimes.

You then set the SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED option, using
ssSetOptions, to tell the simulation engine that you are going to use
the port-based method to specify the rates of the input and output ports
individually. Next, as in the block-based method, you specify the periods and
offsets of all of the block’s rates, both internal and external, using

ssSetSampleTime
ssSetOffsetTime

Finally, as in the port-based method, you specify the rates for each port, using

ssSetInputPortSampleTime(S, idx, period)
ssSetInputPortOffsetTime(S, idx, offset)
ssSetOutputPortSampleTime(S, idx, period)
ssSetOutputPortOffsetTime(S, idx, offset)

Note that each of the assigned port rates must be the same as one of the
previously declared block rates. For an example S-function, see mixedm.c.

8-43

8 Implementing Block Features

Note If you use the SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED option, your
S-function cannot inherit sample times. Instead, you must specify the rate at
which each input and output port runs.

Level-2 MATLAB S-functions support port-based sample times, but do not
support hybrid block-based sample times.

Multirate S-Function Blocks
In a multirate S-Function block, you can encapsulate the code that defines
each behavior in the mdlOutputs and mdlUpdate functions with a statement
that determines whether a sample hit has occurred. In a C MEX S-function,
the ssIsSampleHit macro determines whether the current time is a sample
hit for a specified sample time. The macro has this syntax:

ssIsSampleHit(S, st_index, tid)

where S is the SimStruct, st_index identifies a specific sample time index,
and tid is the task ID (tid is an argument to the mdlOutputs and mdlUpdate
functions).

For example, these statements in a C MEX S-function specify three sample
times: one for continuous behavior and two for discrete behavior.

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetSampleTime(S, 1, 0.75);
ssSetSampleTime(S, 2, 1.0);

In the mdlUpdate function, the following statement encapsulates the code that
defines the behavior for the sample time of 0.75 second.

if (ssIsSampleHit(S, 1, tid)) {
}

The second argument, 1, corresponds to the second sample time, 0.75 second.

Use the following lines to encapsulate the code that defines the behavior for
the continuous sample hit:

8-44

Sample Times

if (ssIsContinuousTask(S,tid)) {
}

In a Level-2 MATLAB S-function, use the IsSampleHit method to determine
whether the current simulation time is one at which a task handled by this
block is active.

Example of Defining a Sample Time for a Continuous Block
This example defines a sample time for a block that is continuous.

/* Initialize the sample time and offset. */
static void mdlInitializeSampleTimes(SimStruct *S)
{

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);

}

You must add this statement to the mdlInitializeSizes function.

ssSetNumSampleTimes(S, 1);

Example of Defining a Sample Time for a Hybrid Block
This example defines sample times for a hybrid S-Function block.

/* Initialize the sample time and offset. */
static void mdlInitializeSampleTimes(SimStruct *S)
{

/* Continuous state sample time and offset. */
ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);

/* Discrete state sample time and offset. */
ssSetSampleTime(S, 1, 0.1);
ssSetOffsetTime(S, 1, 0.025);

}

8-45

8 Implementing Block Features

In the second sample time, the offset causes the Simulink engine to call the
mdlUpdate function at these times: 0.025 second, 0.125 second, 0.225 second,
and so on, in increments of 0.1 second.

The following statement, which indicates how many sample times are defined,
also appears in the mdlInitializeSizes function.

ssSetNumSampleTimes(S, 2);

Multirate S-Functions and Sample Time Hit
Calculations
For fixed-step solvers, Simulink uses integer arithmetic, rather than
floating-point arithmetic, to calculate the sample time hits. Consequently,
task times are integer multiples of their corresponding sample time periods.

This calculation method becomes important if you consider performing
Boolean logic based upon task times in multirate S-functions. For
example, consider an S-function that has two sample times. The fact that
(ssIsSampleHit(S, idx1) == true && ssIsSampleHit(S,idx2) == true, does not
guarantee that ssGetTaskTime(S, idx1) == ssGetTaskTime(S, idx2).

Synchronizing Multirate S-Function Blocks
If tasks running at different rates need to share data, you must ensure that
data generated by one task is valid when accessed by another task running
at a different rate. You can use the ssIsSpecialSampleHit macro in the
mdlUpdate or mdlOutputs routine of a multirate S-function to ensure that the
shared data is valid. This macro returns true if a sample hit has occurred
at one rate and a sample hit has also occurred at another rate in the same
time step. It thus permits a higher rate task to provide data needed by a
slower rate task at a rate the slower task can accommodate. When using the
ssIsSpecialSampleHit macro, the slower sample time must be an integer
multiple of the faster sample time.

Suppose, for example, that your model has an input port operating at one rate
(with a sample time index of 0) and an output port operating at a slower
rate (with a sample time index of 1). Further, suppose that you want the
output port to output the value currently on the input. The following example
illustrates usage of this macro.

8-46

Sample Times

if (ssIsSampleHit(S, 0, tid) {
if (ssIsSpecialSampleHit(S, 0, 1, tid) {

/* Transfer input to output memory. */
...

}
}

if (ssIsSampleHit(S, 1, tid) {
/* Emit output. */
...

}

In this example, the first block runs when a sample hit occurs at the input
rate. If the hit also occurs at the output rate, the block transfers the input to
the output memory. The second block runs when a sample hit occurs at the
output rate. It transfers the output in its memory area to the block’s output.

Note that higher-rate tasks always run before slower-rate tasks. Thus, the
input task in the preceding example always runs before the output task,
ensuring that valid data is always present at the output port.

In a Level-2 MATLAB S-function, use the IsSpecialSampleHit method to
determine whether the current simulation time is one at which multiple tasks
implemented by this block are active.

Specifying Model Reference Sample Time Inheritance
If your C MEX S-function inherits its sample times from the blocks
that drive it, your S-function should specify whether referenced models
containing your S-function can inherit sample times from their parent
model. If the S-function output does not depend on its inherited sample
time, use the ssSetModelReferenceSampleTimeInheritanceRule
macro to set the S-function sample time inheritance rule to
USE_DEFAULT_FOR_DISCRETE_INHERITANCE. Otherwise, set the rule to
DISALLOW_SAMPLE_TIME_INHERITANCE to disallow sample-time inheritance
for referenced models that include S-functions whose outputs depend on their
inherited sample time and thereby avoid inadvertent simulation errors.

8-47

8 Implementing Block Features

Note If your S-function does not set this flag, the Simulink engine assumes
that it does not preclude a referenced model containing it from inheriting a
sample time. However, the engine optionally warns you that the referenced
model contains S-functions that do not specify a sample-time inheritance rule
(see “Blocks Whose Outputs Depend on Inherited Sample Time”).

If you are uncertain whether an existing S-function output depends on its
inherited sample time, check whether it invokes any of the following C macros:

• ssGetSampleTime

• ssGetInputPortSampleTime

• ssGetOutputPortSampleTime

• ssGetInputPortOffsetTime

• ssGetOutputPortOffsetTime

• ssGetSampleTimePtr

• ssGetInputPortSampleTimeIndex

• ssGetOutputPortSampleTimeIndex

• ssGetSampleTimeTaskID

• ssGetSampleTimeTaskIDPtr

or TLC functions:

• LibBlockSampleTime

• CompiledModel.SampleTime

• LibBlockInputSignalSampleTime

• LibBlockInputSignalOffsetTime

• LibBlockOutputSignalSampleTime

• LibBlockOutputSignalOffsetTime

8-48

Sample Times

If your S-function does not invoke any of these macros or functions, its output
does not depend on its inherited sample time and hence it is safe to use in
referenced models that inherit their sample time.

Sample-Time Inheritance Rule Example
As an example of an S-function that precludes a referenced model from
inheriting its sample time, consider an S-function that has the following
mdlOutputs method:

static void mdlOutputs(SimStruct *S, int_T tid) {
const real_T *u = (const real_T*)
ssGetInputPortSignal(S,0);
real_T *y = ssGetOutputPortSignal(S,0);
y[0] = ssGetSampleTime(S,tid) * u[0];

}

The output of this S-function is its inherited sample time, hence its output
depends on its inherited sample time, and hence it is unsafe to use in a
referenced model. For this reason, this S-function should specify its model
reference inheritance rule as follows:

ssSetModelReferenceSampleTimeInheritanceRule
(S, DISALLOW_SAMPLE_TIME_INHERITANCE);

8-49

8 Implementing Block Features

Zero Crossings
S-functions model zero crossings using the mode work vector (or a DWork
vector configured as a mode vector) and the continuous zero-crossing vector.
Whether the S-function uses mode or DWork vectors, the concept and
implementation are the same. For an example using DWork vectors to model
zero crossings, see “DWork Mode Vector” on page 7-21 in the “Using Work
Vectors” section. The remainder of this section uses mode vectors to model
zero crossings.

Note Level-2 MATLAB S-functions do not support zero-crossing detection.
The remainder of this section pertains only to C MEX S-functions.

Elements of the mode vector are integer values. You specify the number of
mode vector elements in mdlInitializeSizes, using ssSetNumModes(S,num).
You can then access the mode vector using ssGetModeVector. The mode
vector values determine how the mdlOutputs routine operates when the
solvers are homing in on zero crossings. The Simulink solvers track the
zero crossings or state events (i.e., discontinuities in the first derivatives) of
some signal, usually a function of an input to your S-function, by looking
at the continuous zero crossings. Register the number of continuous zero
crossings in mdlInitializeSizes, using ssSetNumNonsampledZCs(S, num),
then include an mdlZeroCrossings routine to calculate the continuous zero
crossings. The S-function sfun_zc_sat.c contains a zero-crossing example.
The remainder of this section describes the portions of this S-function that
pertain to zero-crossing detection. For a full description of this example, see
“Zero-Crossing Detection” on page 8-111.

First, mdlInitializeSizes specifies the sizes for the mode and continuous
zero-crossing vectors using the following lines of code.

ssSetNumModes(S, DYNAMICALLY_SIZED);
ssSetNumNonsampledZCs(S, DYNAMICALLY_SIZED);

Since the number of modes and continuous zero crossings is dynamically
sized, mdlSetWorkWidths must initialize the actual size of these vectors. In
this example, shown below, there is one mode vector for each output element
and two continuous zero crossings for each mode. In general, the number of

8-50

Zero Crossings

continuous zero crossings needed for each mode depends on the number of
events that need to be detected. In this case, each output (mode) needs to
detect when it hits the upper or the lower bound, hence two continuous zero
crossings per mode.

static void mdlSetWorkWidths(SimStruct *S)
{

int nModes;
int nNonsampledZCs;

nModes = numOutput;
nNonsampledZCs = 2 * numOutput;

ssSetNumModes(S,nModes);
ssSetNumNonsampledZCs(S,nNonsampledZCs);

}

Next, mdlOutputs determines which mode the simulation is running in at
the beginning of each major time step. The method stores this information
in the mode vector so it is available when calculating outputs at both major
and minor time steps.

/* Get the mode vector */

int_T *mode = ssGetModeVector(S);

/* Specify three possible mode values.*/

enum { UpperLimitEquation, NonLimitEquation, LowerLimitEquation };

/* Update the mode vector at the beginning of a major time step */

if (ssIsMajorTimeStep(S)) {

for (iOutput = 0; iOutput < numOutput; iOutput++) {

if (*uPtrs[uIdx] > *upperLimit) {

/* Upper limit is reached. */

mode[iOutput] = UpperLimitEquation;

} else if (*uPtrs[uIdx] < *lowerLimit) {

/* Lower limit is reached. */

mode[iOutput] = LowerLimitEquation;

} else {

/* Output is not limited. */

8-51

8 Implementing Block Features

mode[iOutput] = NonLimitEquation;

}

/* Adjust indices to give scalar expansion. */

uIdx += uInc;

upperLimit += upperLimitInc;

lowerLimit += lowerLimitInc;

}

/* Reset index to input and limits. */

uIdx = 0;

upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);

lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

} /* end IsMajorTimeStep */

Output calculations in mdlOutputs are done based on the values stored in
the mode vector.

for (iOutput = 0; iOutput < numOutput; iOutput++) {
if (mode[iOutput] == UpperLimitEquation) {

/* Output upper limit. */
*y++ = *upperLimit;

} else if (mode[iOutput] == LowerLimitEquation) {
/* Output lower limit. */
*y++ = *lowerLimit;

} else {
/* Output is equal to input */
*y++ = *uPtrs[uIdx];

}

After outputs are calculated, the Simulink engine calls mdlZeroCrossings
to determine if a zero crossing has occurred. A zero crossing is detected if
any element of the continuous zero-crossing vector switches from negative to
positive, or positive to negative. If this occurs, the simulation modifies the
step size and recalculates the outputs to try to locate the exact zero crossing.
For this example, the values for the continuous zero-crossing vectors are
calculated as shown below.

8-52

Zero Crossings

static void mdlZeroCrossings(SimStruct *S)

{

int_T iOutput;

int_T numOutput = ssGetOutputPortWidth(S,0);

real_T *zcSignals = ssGetNonsampledZCs(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/* Set index and increment for the input signal, upper limit, and lower

* limit parameters so that each gives scalar expansion if needed. */

int_T uIdx = 0;

int_T uInc = (ssGetInputPortWidth(S,0) > 1);

const real_T *upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);

int_T upperLimitInc = (mxGetNumberOfElements(P_PAR_UPPER_LIMIT) > 1);

const real_T *lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

int_T lowerLimitInc = (mxGetNumberOfElements(P_PAR_LOWER_LIMIT) > 1);

/*Check if the input has crossed an upper or lower limit */

for (iOutput = 0; iOutput < numOutput; iOutput++) {

zcSignals[2*iOutput] = *uPtrs[uIdx] - *upperLimit;

zcSignals[2*iOutput+1] = *uPtrs[uIdx] - *lowerLimit;

/* Adjust indices to give scalar expansion if needed */

uIdx += uInc;

upperLimit += upperLimitInc;

lowerLimit += lowerLimitInc;

}

}

8-53

8 Implementing Block Features

S-Function Compliance with the SimState

In this section...

“SimState Compliance Specification for Level-2 MATLAB S-Functions”
on page 8-54

“SimState Compliance Specification for C-MEX S-Functions” on page 8-55

SimState Compliance Specification for Level-2
MATLAB S-Functions
In order for a Level-2 MATLAB S-function to work with the SimState feature,
you must specify the simStateCompliance of the block using the method,

block.simStateCompliance = setting

where the permissible setting values are:

Setting Result

'UnknownSimState' This default setting instructs Simulink to use the DefaultSimState to
save and restore the SimState and issues a warning.

'DefaultSimState' This setting instructs Simulink to treat the S-function like a built-in
block when saving and restoring the SimState.

'HasNoSimState' This setting informs Simulink that the S-function does not have any
simulation state. With this setting, no state information is saved for the
block. This setting is primarily useful for "sink" blocks (i.e., blocks with
no output ports) that use PWorks or DWorks to store handles to files or
figure windows.

'CustomSimState' This setting informs Simulink that the S-function has custom
GetSimState and SetSimState methods.

'DisallowSimState' This setting informs Simulink that the S-function does not allow saving
or restoring its simulation state. Simulink reports an error if you save
and restore the SimState of the model that contains this S-function.

For an S-function with custom methods ('CustomSimState'), you can use the
following statements to respectively get and set the SimState:

8-54

S-Function Compliance with the SimState

function outSS = GetSimState(block)
function SetSimState(block, inSS)

For an example of how to implement these custom methods, see
msfcn_varpulse.m.

SimState Compliance Specification for C-MEX
S-Functions
As with the MATLAB S-function, your C-MEX S-function code must inform
Simulink of the S-function compliance with the SimState feature. You can
accomplish this task by using the S-function API, ssSetSimStateCompliance.

In most cases, you must add only the following line:

ssSetSimStateCompliance(S, USE_DEFAULT_SIM_STATE).

8-55

8 Implementing Block Features

The options are as follows:

Setting Result

SIM_STATE_COMPLIANCE_UNKNOWN This is the default setting for all S-functions. For
S-functions that do not use PWorks, Simulink saves and
restores the default simulation state (see next option) and
issues a warning to inform the user of this assumption. On
the other hand, Simulink reports an error during the save
and restore if it encounters an S-function that uses PWorks.

USE_DEFAULT_SIM_STATE This setting instructs Simulink to treat the S-function like
a built-in block when saving and restoring the SimState.

HAS_NO_SIM_STATE This setting informs Simulink that the S-function does
not have any simulation state. With this setting, no state
information is saved for this block. This setting is primarily
useful for "sink" blocks (i.e., blocks with no output ports)
that use PWorks or DWorks to store handles to files or figure
windows.

DISALLOW_SIM_STATE This setting informs Simulink that the S-function does
not allow the saving or restoring of its simulation state.
Simulink reports an error if you save and restore the
SimState of the model that contains this S-function.

USE_CUSTOM_SIM_STATE This setting informs Simulink that the S-function has
mdlGetSimState and mdlSetSimState methods.

For S-functions that use PWork vectors or static variables to hold data that
Simulink updates during simulation, the S-function must use the custom
mdlGetSimState and mdlSetSimState methods. The following statements
demonstrate the proper format.

mxArray* mdlGetSimState(SimStruct* S)
void mdlSetSimState(SimStruct* S, const mxArray* inSS)

For an example of how to implement these methods, see sfun_simstate.c.

8-56

Matrices in C S-Functions

Matrices in C S-Functions

In this section...

“MX Array Manipulation” on page 8-57

“Memory Allocation” on page 8-58

MX Array Manipulation
S-functions can manipulate mxArrays using the standard MATLAB
API functions. (See “C/C++ Matrix Library API” for a list of functions.)
In general, if your S-function is declared exception free by passing
the SS_OPTION_EXCEPTION_FREE_CODE option to ssSetOptions (see
Exception Free Code in “Error Handling” on page 8-69), it should avoid
MATLAB API functions that throw exceptions (i.e., long jump), such as
mxCreateDoubleMatrix. Otherwise, the S-function can use any of the listed
functions.

If you have Simulink Coder, it supports a subset of the mxArray manipulation
functions when generating noninlined code for an S-function. For a list of
supported functions, see “Write Noninlined S-Functions”.

Calls to the macro ssGetSFcnParam return a pointer to an mxArray, which
can be used with the mxArray manipulation functions. If your S-function
contains S-function parameters, use the mxArray manipulation functions in
the mdlCheckParameters method to check the S-function parameter values.
See the S-function sfun_runtime3.c for an example

In this S-function, the following lines check that the first S-function parameter
is a character array with a length greater than or equal to two.

if (!mxIsChar(ssGetSFcnParam(S, 0)) ||

(nu=mxGetNumberOfElements(ssGetSFcnParam(S, 0))) < 2) {

ssSetErrorStatus(S,"1st parameter to S-function must be a "

"string of at least 2 '+' and '-' characters");

return;

}

8-57

8 Implementing Block Features

Memory Allocation
When you create an S-function, you might need to allocate memory for each
instance of your S-function. The standard MATLAB API memory allocation
routines mxCalloc and mxFree should not be used with C MEX S-functions,
because these routines are designed to be used with MEX files that are called
from the MATLAB environment and not the Simulink environment. The
correct approach for allocating memory is to use the stdlib.h library routines
calloc and free. In mdlStart, allocate and initialize the memory

UD *ptr = (UD *)calloc(1,sizeof(UD));

where UD, in this example, is a data structure defined at the beginning of the
S-function. Then, place the pointer to it either in the pointer work vector

ssSetPWorkValue(S, 0, ptr);

or attach it as user data.

ssSetUserData(S,ptr);

In mdlTerminate, free the allocated memory. For example, if the pointer
was stored in the user data

UD *prt = ssGetUserData(S);
free(prt);

8-58

Function-Call Subsystems and S-Functions

Function-Call Subsystems and S-Functions
You can create a triggered subsystem whose execution is determined by
logic internal to a C MEX S-function instead of by the value of a signal. A
subsystem so configured is called a function-call subsystem. You cannot
trigger a function-call subsystem from a Level-2 MATLAB S-function. To
implement a function-call subsystem:

• In the Trigger block, select function-call as the Trigger type parameter.

• In the S-function, use the ssEnableSystemWithTid and
ssDisableSystemWithTid to enable or disable the triggered
subsystem and the ssCallSystemWithTid macro to call the triggered
subsystem.

• In the model, connect the S-Function block output directly to the trigger
port.

Note Function-call connections can only be performed on the first output
port.

Function-call subsystems are not executed directly by the Simulink engine;
rather, the S-function determines when to execute the subsystem. When
the subsystem completes execution, control returns to the S-function. This
figure illustrates the interaction between a function-call subsystem and an
S-function.

In this figure, ssCallSystemWithTid executes the function-call subsystem
that is connected to the first output port element. ssCallSystemWithTid
returns 0 if an error occurs while executing the function-call subsystem or if

8-59

8 Implementing Block Features

the output is unconnected. After the function-call subsystem executes, control
is returned to your S-function.

Function-call subsystems can only be connected to S-functions that have been
properly configured to accept them.

To configure an S-function to call a function-call subsystem:

• Specify the elements that are to execute the function-call subsystem in
mdlInitializeSampleTimes. For example:

ssSetCallSystemOutput(S,0); /* call on first element */
ssSetCallSystemOutput(S,1); /* call on second element */

• Specify in mdlInitializeSampleTimes whether you want the S-function to
be able to enable or disable the function-call subsystem. Only S-functions
that explicitly enable and disable the function-call subsystem can reset the
states and outputs of the subsystem, as determined by the function-call
subsystem’s Trigger and Outport blocks. For example, the code

ssSetExplicitFCSSCtrl(S, 1);

in mdlInitializeSampleTimes specifies that the S-function can enable
and disable the function-call subsystem. In this case, the S-function must
invoke ssEnableSystemWithTid before executing the subsystem using
ssCallSystemWithTid.

8-60

Function-Call Subsystems and S-Functions

• Execute the subsystem in the appropriate mdlOutputs or mdlUpdate
S-function routine. For example:

static void mdlOutputs(...)
{

if (((int)*uPtrs[0]) % 2 == 1) {
if (!ssCallSystemWithTid(S,0,tid)) {

/* Error occurred, which will be reported by */
/*the Simulink engine*/

return;
}

} else {
if (!ssCallSystemWithTid(S,1,tid)) {

/* Error occurred, which will be reported by */
/*the Simulink engine*/

return;
}

}
...

}

Note Do not use ssSetOutputPortDataType or ssGetOutputPortDataType
on an S-function output that emits function-call signals. The Simulink engine
explicitly controls the data type of these output signals.

See sfun_fcncall.c for an example that executes a function-call subsystem
on the first and second elements of the first S-function output. The following
Simulink model (sfcndemo_sfun_fcncall) uses this S-function.

8-61

8 Implementing Block Features

The first function-call subsystem provides a sine wave output. The second
function-call subsystem is a simple feedback loop containing a Unit Delay
block.

8-62

Function-Call Subsystems and S-Functions

When the Pulse Generator emits its upper value, the function-call subsystem
connected to the first element of the first S-function output port is triggered.
Similarly, when the Pulse Generator emits its lower value, the function-call
subsystem connected to the second element is triggered. The simulation
output is shown on the following Scope.

8-63

8 Implementing Block Features

Function-call subsystems are a powerful modeling construct. You can
configure Stateflow® blocks to execute function-call subsystems, thereby
extending the capabilities of the blocks. For more information, see the
Stateflow documentation.

8-64

Sim Viewing Devices in External Mode

Sim Viewing Devices in External Mode
A sim viewing device encapsulates processing and viewing of signals received
from the target system in external mode. During simulation in external mode,
the target system uploads the appropriate input values to the sim viewing
device in the Simulink model. The sim viewing device then conditions the
input signals as needed and renders the signals on the screen. A sim viewing
device runs only on the host, generating no code in the target system and,
therefore, allowing extra processing of displayed signals without burdening
the generated code.

You can use your S-function as a sim viewing device in external mode if it
satisfies the following conditions.

• The S-function has no output ports.

• The S-function contains no states.

• The generated code does not require the conditioned signals produced by
the S-function.

To specify a C MEX S-function as a sim viewing device, set the
SS_OPTION_SIM_VIEWING_DEVICE option in the mdlInitializeSizes
function. For example

ssSetOptions(S, SS_OPTION_SIM_VIEWING_DEVICE);

To specify a Level-2 MATLAB S-function as a sim viewing device, call the
run-time object’s SetSimViewingDevice method in the S-function setup
callback method.

When simulating a model in Rapid Accelerator mode, signal logging or a To
Workspace block connected to the sim viewing device will not log any data.

External mode compatible S-functions are selected, and the trigger is armed,
by using the External Signal & Triggering dialog box. For more information
see “Host/Target Communication” in the Simulink Coder documentation.

8-65

8 Implementing Block Features

Frame-Based Signals

In this section...

“About Frame-Based Signals” on page 8-66

“Using Frame-Based Signals in C S-Functions” on page 8-66

“Using Frame-Based Signals in Level-2 MATLAB S-Functions” on page 8-68

About Frame-Based Signals
This section explains how to create an S-function that accepts or produces
frame-based signals. For more information, see “Sample- and Frame-Based
Concepts” in the DSP System Toolbox™ documentation.

Note Simulating a model containing an S-function that accepts or produces
frames requires a DSP System Toolbox product license.

Using Frame-Based Signals in C S-Functions
To accept or produce frame-based signals, a C MEX S-function must perform
the following tasks:

• The S-function mdlInitializeSizes callback method must set the port
frame status to FRAME_YES, FRAME_NO, or FRAME_INHERITED for each
of the S-function I/O ports, using the ssSetInputPortFrameData and
ssSetOutputPortFrameData functions. The frame status for a port must
be set after the call to ssSetNumInputPorts and ssSetNumOutputPorts.
For example, the following code in mdlInitializeSizes specifies that
the first input port accepts a frame-based signal while the first output
port emits a sample-based signal:

ssSetNumInputPorts(S, 1);
ssSetInputPortFrameData(S, 0, FRAME_YES);
ssSetNumOutputPorts(S,1);
ssSetOutputPortFrameData(S, 0, FRAME_NO);

• The S-function should specify the dimensions of the signals that its
frame-based ports accept or produce in its mdlInitializeSizes or

8-66

Frame-Based Signals

mdlSetInputPortDimensionInfo and mdlSetOutputPortDimensionInfo
callback methods. Note that frame-based signals must be dimensioned
as 2-D arrays. For example, the following code in mdlInitializeSizes
specifies that the first frame-based input port is dynamically sized. This
S-function must then also have an mdlSetInputPortDimensionInfo
callback that sets the specific dimensions of this input port.

ssSetNumInputPorts(S, 1);

ssSetInputPortFrameData(S, 0, FRAME_YES);

ssSetInputPortMatrixDimensions(S, 0, DYNAMICALLY_SIZED, DYNAMICALLY_SIZED);

• If the frame status of any of the S-function input ports is inherited,
the S-function should define a mdlSetInputPortFrameData callback
method. The Simulink engine passes the frame status that it assigns
to the port, based on frame signal propagation rules, as an argument
to this callback method. The callback method should in turn use the
ssSetInputPortFrameData function to set the port to the assigned status
if it is acceptable or signal an error using ssSetErrorStatus if it is not.
If the frame status of other ports of the S-function depend on the status
inherited by one of its input ports, the callback method can also use
ssSetInputPortFrameData to set the frame status of the other ports
based on the status that the input port inherits. A template for the
mdlSetInputPortFrameData callback is shown below.

#if defined(MATLAB_MEX_FILE)

#define MDL_SET_INPUT_PORT_FRAME_DATA

static void mdlSetInputPortFrameData(SimStruct *S,

int_T portIndex,

Frame_T frameData)

{

if(!frameData==FRAME_YES) {

ssSetErrorStatus(S, "Incorrect frame status");

return;

}

ssSetInputPortFrameData(S, portIndex, frameData); /* Sets frame status */

} /* end mdlSetInputPortFrameData */

#endif

8-67

8 Implementing Block Features

• The S-function mdlOutputs method should include code to process the
signals. The macro ssGetInputPortDimensions can be used in mdlOutputs
to determine the dimensions of dynamically sized frame-based inputs, as
follows:

int *dims = ssGetInputPortDimensions(S, 0);
int frameSize = dims[0];
int numChannels = dims[1];

See the frame-based A/D converter S-function example (sfun_frmad.c) for
an example of how to create a frame-based S-function. This S-function is
one of several S-functions that manipulate frame-based signals found in the
Simulink model sfcndemo_frame.

Using Frame-Based Signals in Level-2 MATLAB
S-Functions
In a Level-2 MATLAB S-function, set the SamplingMode property of the port
to indicate if the block accepts frame-based signals, for example:

block.InputPort(1).SamplingMode = 'Inherited';

If any of the ports inherited their sampling mode, define a
SetInputPortSamplingMode callback method to specify the sampling mode.

8-68

Error Handling

Error Handling

In this section...

“About Handling Errors” on page 8-69

“Exception Free Code” on page 8-70

“ssSetErrorStatus Termination Criteria” on page 8-71

“Checking Array Bounds” on page 8-72

About Handling Errors
When working with S-functions, it is important to handle unexpected events
such as invalid parameter values correctly.

If your C MEX S-function has parameters whose contents you need to
validate, use the following technique to report errors.

ssSetErrorStatus(S,"Error encountered due to ...");
return;

In most cases, the Simulink engine displays errors in the Diagnostic Viewer.
If the error is encountered in mdlCheckParameters as the S-function
parameters are being entered into the block dialog, the engine opens the error
dialog shown below. In either case, the engine displays the error message
along with the name of the S-function and the associated S-function block
that invoked the error.

8-69

8 Implementing Block Features

The second argument to ssSetErrorStatus must be persistent memory. It
cannot be a local variable in your function. For example, the following causes
unpredictable errors.

mdlOutputs()
{

char msg[256]; /* ILLEGAL: should be "static char */
/*msg[256];"*/

sprintf(msg,"Error due to %s", string);
ssSetErrorStatus(S,msg);
return;

}

Because ssSetErrorStatus does not generate exceptions, using it to
report errors in your S-function is preferable to using mexErrMsgTxt. The
mexErrMsgTxt function uses exception handling to terminate S-function
execution. To support exception handling in S-functions, the Simulink engine
must set up exception handlers prior to each S-function invocation. This
introduces overhead into simulation.

Exception Free Code
You can avoid simulation overhead by ensuring that your C MEX S-function
contains entirely exception free code. Exception free code refers to code that
never long-jumps. Your S-function is not exception free if it contains any
routine that, when called, has the potential of long-jumping. For example,
mexErrMsgTxt throws an exception (i.e., long-jumps) when called, thus ending
execution of your S-function. Using mxCalloc can cause unpredictable results
in the event of a memory allocation error, because mxCalloc long-jumps. If
memory allocation is needed, use the stdlib.h calloc routine directly and
perform your own error handling.

If you do not call mexErrMsgTxt or other API routines that cause exceptions,
use the SS_OPTION_EXCEPTION_FREE_CODE S-function option. You do this by
issuing the following command in the mdlInitializeSizes function.

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

Setting this option increases the performance of your S-function by
allowing the Simulink engine to bypass the exception-handling setup

8-70

Error Handling

that is usually performed prior to each S-function invocation. You must
take extreme care to verify that your code is exception free when using
SS_OPTION_EXCEPTION_FREE_CODE. If your S-function generates an exception
when this option is set, unpredictable results occur.

All mex* routines have the potential of long-jumping. Several mx* routines
also have the potential of long-jumping. To avoid any difficulties, use only
the API routines that retrieve a pointer or determine the size of parameters.
For example, the following API routines never throw an exception:
mxGetPr, mxGetData, mxGetNumberOfDimensions, mxGetM, mxGetN, and
mxGetNumberOfElements.

Code in run-time routines can also throw exceptions. Run-time routines refer
to certain S-function routines that the engine calls during the simulation
loop (see “Simulink Engine Interaction with C S-Functions” on page 4-69).
The run-time routines include

• mdlGetTimeOfNextVarHit

• mdlOutputs

• mdlUpdate

• mdlDerivatives

If all run-time routines within your S-function are exception free, you can
use this option:

ssSetOptions(S, SS_OPTION_RUNTIME_EXCEPTION_FREE_CODE);

The other routines in your S-function do not have to be exception free.

ssSetErrorStatus Termination Criteria
If one of your C MEX S-function callback methods invokes ssSetErrorStatus
during a simulation, the Simulink engine posts the error and terminates
the simulation as soon as the callback method returns. If your S-function
SS_OPTION_CALL_TERMINATE_ON_EXIT option is enabled (see ssSetOptions),
The engine invokes your S-function mdlTerminate method as part of
the termination process. Otherwise, the engine invokes your S-function
mdlTerminate method only if at least one block mdlStart method has
executed without error during the simulation.

8-71

8 Implementing Block Features

Checking Array Bounds
If your C MEX S-function causes otherwise inexplicable errors, the reason
might be that the S-function is writing beyond its assigned areas in memory.
You can verify this possibility by enabling the array bounds checking feature.
This feature detects any attempt by an S-Function block to write beyond the
areas assigned to it for the following types of block data:

• Work vectors (R, I, P, D, and mode)

• States (continuous and discrete)

• Outputs

To enable array bounds checking, select warning or error from the Array
bounds exceeded options list in the Debugging group on the Diagnostics
- Data Validity pane of the Configuration Parameters dialog box or enter
the following command at the MATLAB command prompt.

set_param(modelName, 'ArrayBoundsChecking', ValueStr)

where modelName is the name of the Simulink model and ValueStr is either
'none', 'warning', or 'error'.

8-72

C MEX S-Function Examples

C MEX S-Function Examples

In this section...

“About S-Function Examples” on page 8-73

“Continuous States” on page 8-73

“Discrete States” on page 8-80

“Continuous and Discrete States” on page 8-86

“Variable Sample Time” on page 8-94

“Array Inputs and Outputs” on page 8-100

“Zero-Crossing Detection” on page 8-111

“Discontinuities in Continuous States” on page 8-129

About S-Function Examples
All examples are based on the CMEX S-function templates sfuntmpl_basic.c
and sfuntmpl_doc.c. Open sfuntmpl_doc.c. for a detailed discussion of the
S-function template.

Continuous States
The csfunc.c example shows how to model a continuous system with states
using a C MEX S-function. The following Simulink model uses this S-function.

sfcndemo_csfunc

In continuous state integration, the Simulink solvers integrate a set of
continuous states using the following equations.

8-73

8 Implementing Block Features

S-functions that contain continuous states implement a state-space equation.
The mdlOutputs method contains the output portion and mdlDerivatives
method contains the derivative portion of the state-space equation. To
visualize how the integration works, see the flowchart in “Simulink
Engine Interaction with C S-Functions” on page 4-69. The output equation
corresponds to the mdlOutputs in the major time step. Next, the example
enters the integration section of the flowchart. Here the Simulink engine
performs a number of minor time steps during which it calls mdlOutputs and
mdlDerivatives. Each of these pairs of calls is referred to as an integration
stage. The integration returns with the continuous states updated and the
simulation time moved forward. Time is moved forward as far as possible,
providing that error tolerances in the state are met. The maximum time
step is subject to constraints of discrete events such as the actual simulation
stop time and the user-imposed limit.

The csfunc.c example specifies that the input port has direct feedthrough.
This is because matrix D is initialized to a nonzero matrix. If D is set equal to
a zero matrix in the state-space representation, the input signal is not used
in mdlOutputs. In this case, the direct feedthrough can be set to 0, which
indicates that csfunc.c does not require the input signal when executing
mdlOutputs.

matlabroot/simulink/src/csfunc.c
The S-function begins with #define statements for the S-function name and
level, and a #include statement for the simstruc.h header. After these
statements, the S-function can include or define any other necessary headers,
data, etc. The csfunc.c example defines the variable U as a pointer to the first
input port’s signal and initializes static variables for the state-space matrices.

/* File : csfunc.c

* Abstract:

*

* Example C S-function for defining a continuous system.

*

* x' = Ax + Bu

* y = Cx + Du

*

* For more details about S-functions, see simulink/src/sfuntmpl_doc.c.

*

8-74

C MEX S-Function Examples

* Copyright 1990-2007 The MathWorks, Inc.

*/

#define S_FUNCTION_NAME csfunc

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

static real_T A[2][2]={ { -0.09, -0.01 } ,

{ 1 , 0 }

};

static real_T B[2][2]={ { 1 , -7 } ,

{ 0 , -2 }

};

static real_T C[2][2]={ { 0 , 2 } ,

{ 1 , -5 }

};

static real_T D[2][2]={ { -3 , 0 } ,

{ 1 , 0 }

};

The required S-function method mdlInitializeSizes then sets up the
following S-function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog
parameters to zero.

• ssGetSFcnParamsCount determines how many parameters the user actually
entered into the S-function dialog. If the number of user-specified
parameters does not match the number returned by ssGetNumSFcnParams,
the S-function errors out.

• If the S-function parameter count passes, mdlInitializeSizes sets the
number of continuous and discrete states using ssSetNumContStates and
ssSetNumDiscStates, respectively. This example has two continuous states
and zero discrete states.

8-75

8 Implementing Block Features

• Next, the method configures the S-function to have a single input
and output port, each with a width of two to match the dimensions
of the state-space matrices. The method passes a value of 1 to
ssSetInputPortDirectFeedThrough to indicate the input port has direct
feedthrough.

• ssSetNumSampleTimes initializes one sample time, which the
mdlInitializeSampleTimes function configures later.

• The S-function indicates that no work vectors are used by passing a value
of 0 to ssSetNumRWork, ssSetNumIWork, etc. You can omit these lines because
zero is the default value for all of these macros. However, for clarity, the
S-function explicitly sets the number of work vectors.

• Lastly, ssSetOptions sets any applicable options. In this case, the only
option is SS_OPTION_EXCEPTION_FREE_CODE, which stipulates that the
code is exception free.

The mdlInitializeSizes function for this example is shown below.

/*====================*

* S-function methods *

====================/

/* Function: mdlInitializeSizes ===

* Abstract:

* Determine the S-function block's characteristics:

* number of inputs, outputs, states, etc.

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch reported by the Simulink engine*/

}

ssSetNumContStates(S, 2);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 2);

ssSetInputPortDirectFeedThrough(S, 0, 1);

8-76

C MEX S-Function Examples

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 2);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

/* Take care when specifying exception free code - see sfuntmpl_doc.c */

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

The required S-function method mdlInitializeSampleTimes specifies
the S-function sample rates. The value CONTINUOUS_SAMPLE_TIME
passed to the ssSetSampleTime macro specifies that the first
S-function sample rate be continuous. ssSetOffsetTime then
specifies an offset time of zero for this sample rate. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to use
the default rule to determine if referenced models containing this S-function
can inherit their sample times from the parent model.

/* Function: mdlInitializeSampleTimes ===

* Abstract:

* Specifiy that we have a continuous sample time.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

The optional S-function method mdlInitializeConditions initializes the
continuous state vector. The #define statement before this method is
required for the Simulink engine to call this function. In the example below,
ssGetContStates obtains a pointer to the continuous state vector. The for
loop then initializes each state to zero.

8-77

8 Implementing Block Features

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ==

* Abstract:

* Initialize both continuous states to zero.

*/

static void mdlInitializeConditions(SimStruct *S)

{

real_T *x0 = ssGetContStates(S);

int_T lp;

for (lp=0;lp<2;lp++) {

*x0++=0.0;

}

}

The required mdlOutputs function computes the output signal of this
S-function. The beginning of the function obtains pointers to the first output
port, continuous states, and first input port. The S-function uses the data in
these arrays to solve the output equation y=Cx+Du.

/* Function: mdlOutputs ===

* Abstract:

* y = Cx + Du

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

real_T *y = ssGetOutputPortRealSignal(S,0);

real_T *x = ssGetContStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

UNUSED_ARG(tid); /* not used in single tasking mode */

/* y=Cx+Du */

y[0]=C[0][0]*x[0]+C[0][1]*x[1]+D[0][0]*U(0)+D[0][1]*U(1);

y[1]=C[1][0]*x[0]+C[1][1]*x[1]+D[1][0]*U(0)+D[1][1]*U(1);

}

The mdlDerivatives function calculates the continuous state derivatives.
Because this function is an optional method, a #define statement must
precede the function. The beginning of the function obtains pointers to the

8-78

C MEX S-Function Examples

S-function continuous states, state derivatives, and first input port. The
S-function uses this data to solve the equation dx=Ax+Bu.

#define MDL_DERIVATIVES

/* Function: mdlDerivatives ===

* Abstract:

* xdot = Ax + Bu

*/

static void mdlDerivatives(SimStruct *S)

{

real_T *dx = ssGetdX(S);

real_T *x = ssGetContStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/* xdot=Ax+Bu */

dx[0]=A[0][0]*x[0]+A[0][1]*x[1]+B[0][0]*U(0)+B[0][1]*U(1);

dx[1]=A[1][0]*x[0]+A[1][1]*x[1]+B[1][0]*U(0)+B[1][1]*U(1);

}

The required mdlTerminate function performs any actions, such as freeing
memory, necessary at the end of the simulation. In this example, the function
is empty.

/* Function: mdlTerminate ===

* Abstract:

* No termination needed, but we are required to have this routine.

*/

static void mdlTerminate(SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

}

The required S-function trailer includes the files necessary for simulation or
code generation, as follows.

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX file? */

#include "simulink.c" /* MEX file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

8-79

8 Implementing Block Features

Note The mdlOutputs and mdlTerminate functions use the UNUSED_ARG
macro to indicate that an input argument the callback requires is not used.
This optional macro is defined in simstruc_types.h. If used, you must call
this macro once for each input argument that a callback does not use.

Discrete States
The dsfunc.c example shows how to model a discrete system in a C MEX
S-function. The following Simulink model uses this S-function.

sfcndemo_dsfunc

Discrete systems can be modeled by the following set of equations.

The dsfunc.c example implements a discrete state-space equation. The
mdlOutputs method contains the output portion and the mdlUpdate method
contains the update portion of the discrete state-space equation. To visualize
how the simulation works, see the flowchart in “Simulink Engine Interaction
with C S-Functions” on page 4-69. The output equation above corresponds
to the mdlOutputs in the major time step. The preceding update equation
corresponds to the mdlUpdate in the major time step. If your model does not
contain continuous elements, the Simulink engine skips the integration phase
and time is moved forward to the next discrete sample hit.

matlabroot/simulink/src/dsfunc.c
The S-function begins with #define statements for the S-function name and
level, along with a #include statement for the simstruc.h header. After
these statements, the S-function can include or define any other necessary

8-80

C MEX S-Function Examples

headers, data, etc. The dsfunc.c example defines U as a pointer to the first
input port’s signal and initializes static variables for the state-space matrices.

/* File : dsfunc.c

* Abstract:

*

* Example C S-function for defining a discrete system.

*

* x(n+1) = Ax(n) + Bu(n)

* y(n) = Cx(n) + Du(n)

*

* For more details about S-functions, see simulink/src/sfuntmpl_doc.c.

*

* Copyright 1990-2007 The MathWorks, Inc.

*/

#define S_FUNCTION_NAME dsfunc

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

static real_T A[2][2]={ { -1.3839, -0.5097 } ,

{ 1 , 0 }

};

static real_T B[2][2]={ { -2.5559, 0 } ,

{ 0 , 4.2382 }

};

static real_T C[2][2]={ { 0 , 2.0761 } ,

{ 0 , 7.7891 }

};

static real_T D[2][2]={ { -0.8141, -2.9334 } ,

{ 1.2426, 0 }

};

8-81

8 Implementing Block Features

The required S-function method mdlInitializeSizes then sets up the
following S-function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog
parameters to zero.

• ssGetSFcnParamsCount determines how many parameters the user actually
entered into the S-function dialog. If the number of user-specified
parameters does not match the number returned by ssGetNumSFcnParams,
the S-function errors out.

• If the S-function parameter count passes, mdlInitializeSizes next sets
the number of continuous and discrete states using ssSetNumContStates
and ssSetNumDiscStates, respectively. This example has zero continuous
states and two discrete states.

• Next, the method configures the S-function to have a single input
and output port, each with a width of two to match the dimensions
of the state-space matrices. The method passes a value of 1 to
ssSetInputPortDirectFeedThrough to indicate the input port has direct
feedthrough.

• ssSetNumSampleTimes initializes one sample time, which the
mdlInitializeSampleTimes function configures later.

• The S-function indicates that no work vectors are used by passing a value
of 0 to ssSetNumRWork, ssSetNumIWork, etc. You can omit these lines because
zero is the default value for all of these macros. However, for clarity, the
S-function explicitly sets the number of work vectors.

• Lastly, ssSetOptions sets any applicable options. In this case, the only
option is SS_OPTION_EXCEPTION_FREE_CODE, which stipulates that the
code is exception free.

The mdlInitializeSizes function for this example is shown below.

/*====================*

* S-function methods *

====================/

/* Function: mdlInitializeSizes ===

* Abstract:

* Determine the S-function block's characteristics:

8-82

C MEX S-Function Examples

* number of inputs, outputs, states, etc.

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch reported by the Simulink engine*/

}

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 2);

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 2);

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 2);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

/* Take care when specifying exception free code - see sfuntmpl_doc.c */

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

The required S-function method mdlInitializeSampleTimes
specifies the S-function sample rates. A call to ssSetSampleTime sets
this first S-function sample period to 1.0. ssSetOffsetTime then
specifies an offset time of zero for the first sample rate. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to use
the default rule to determine if referenced models containing this S-function
can inherit their sample times from the parent model.

/* Function: mdlInitializeSampleTimes ===

* Abstract:

8-83

8 Implementing Block Features

* Specifiy a sample time 0f 1.0.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, 1.0);

ssSetOffsetTime(S, 0, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

The optional S-function method mdlInitializeConditions initializes
the discrete state vector. The #define statement before this method is
required for the Simulink engine to call this function. In the example below,
ssGetRealDiscStates obtains a pointer to the discrete state vector. The for
loop then initializes each discrete state to one.

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ==

* Abstract:

* Initialize both discrete states to one.

*/

static void mdlInitializeConditions(SimStruct *S)

{

real_T *x0 = ssGetRealDiscStates(S);

int_T lp;

for (lp=0;lp<2;lp++) {

*x0++=1.0;

}

}

The required mdlOutputs function computes the output signal of this
S-function. The beginning of the function obtains pointers to the first output
port, discrete states, and first input port. The S-function uses the data in
these arrays to solve the output equation y=Cx+Du.

/* Function: mdlOutputs ===

* Abstract:

* y = Cx + Du

*/

static void mdlOutputs(SimStruct *S, int_T tid)

8-84

C MEX S-Function Examples

{

real_T *y = ssGetOutputPortRealSignal(S,0);

real_T *x = ssGetRealDiscStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

UNUSED_ARG(tid); /* not used in single tasking mode */

/* y=Cx+Du */

y[0]=C[0][0]*x[0]+C[0][1]*x[1]+D[0][0]*U(0)+D[0][1]*U(1);

y[1]=C[1][0]*x[0]+C[1][1]*x[1]+D[1][0]*U(0)+D[1][1]*U(1);

}

The Simulink engine calls the mdlUpdate function once every major
integration time step to update the discrete states’ values. Because this
function is an optional method, a #define statement must precede the
function. The beginning of the function obtains pointers to the S-function
discrete states and first input port. The S-function uses the data in these
arrays to solve the equation dx=Ax+Bu, which is stored in the temporary
variable tempX before being assigned into the discrete state vector x.

#define MDL_UPDATE

/* Function: mdlUpdate ==

* Abstract:

* xdot = Ax + Bu

*/

static void mdlUpdate(SimStruct *S, int_T tid)

{

real_T tempX[2] = {0.0, 0.0};

real_T *x = ssGetRealDiscStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

UNUSED_ARG(tid); /* not used in single tasking mode */

/* xdot=Ax+Bu */

tempX[0]=A[0][0]*x[0]+A[0][1]*x[1]+B[0][0]*U(0)+B[0][1]*U(1);

tempX[1]=A[1][0]*x[0]+A[1][1]*x[1]+B[1][0]*U(0)+B[1][1]*U(1);

x[0]=tempX[0];

x[1]=tempX[1];

}

8-85

8 Implementing Block Features

The required mdlTerminate function performs any actions, such as freeing
memory, necessary at the end of the simulation. In this example, the function
is empty.

/* Function: mdlTerminate ===

* Abstract:

* No termination needed, but we are required to have this routine.

*/

static void mdlTerminate(SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

}

The required S-function trailer includes the files necessary for simulation or
code generation, as follows.

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX file? */

#include "simulink.c" /* MEX file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

Note The mdlOutputs and mdlTerminate functions use the UNUSED_ARG
macro to indicate that an input argument the callback requires is not used.
This optional macro is defined in simstruc_types.h. If used, you must call
this macro once for each input argument that a callback does not use.

Continuous and Discrete States
The mixedm.c example shows a hybrid (a combination of continuous and
discrete states) system. The mixedm.c example combines elements of
csfunc.c and dsfunc.c. The following Simulink model uses this S-function.

sfcndemo_mixedm

If you have a hybrid system, the mdlDerivatives method calculates the
derivatives of the continuous states of the state vector, x, and the mdlUpdate

8-86

C MEX S-Function Examples

method contains the equations used to update the discrete state vector, xD.
The mdlOutputs method computes the S-function outputs after checking for
sample hits to determine at what point the S-function is being called.

In Simulink block diagram form, the S-function mixedm.c looks like

which implements a continuous integrator followed by a discrete unit delay.

matlabroot/simulink/src/mixedm.c
The S-function begins with #define statements for the S-function name and
level, along with a #include statement for the simstruc.h header. After
these statements, the S-function can include or define any other necessary
headers, data, etc. The mixedm.c example defines U as a pointer to the first
input port’s signal.

/* File : mixedm.c

* Abstract:

*

* An example S-function illustrating multiple sample times by implementing

* integrator -> ZOH(Ts=1second) -> UnitDelay(Ts=1second)

* with an initial condition of 1.

* (e.g. an integrator followed by unit delay operation).

*

* For more details about S-functions, see simulink/src/sfuntmpl_doc.c

*

* Copyright 1990-2007 The MathWorks, Inc.

*/

#define S_FUNCTION_NAME mixedm

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

8-87

8 Implementing Block Features

The required S-function method mdlInitializeSizes then sets up the
following S-function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog
parameters to zero.

• ssGetSFcnParamsCount determines how many parameters the user actually
entered into the S-function dialog. If the number of user-specified
parameters does not match the number returned by ssGetNumSFcnParams,
the S-function errors out.

• If the S-function parameter count passes, mdlInitializeSizes next sets
the number of continuous and discrete states using ssSetNumContStates
and ssSetNumDiscStates, respectively. This example has one continuous
state and one discrete state.

• The S-function initializes one floating-point work vector by passing a value
of 1 to ssSetNumRWork. No other work vectors are initialized.

• Next, the method uses ssSetNumInputPorts and ssSetNumOutputPorts
to configure the S-function to have a single input and output port,
each with a width of one. The method passes a value of 1 to
ssSetInputPortDirectFeedThrough to indicate the input port has direct
feedthrough.

• This S-function assigns sample times using a hybrid block-based and
port-based method. The macro ssSetNumSampleTimes initializes two
block-based sample times, which the mdlInitializeSampleTimes
function configures later. The macros ssSetInputPortSampleTime and
ssSetInputPortOffsetTime initialize the input port to have a continuous
sample time with an offset of zero. Similarly, ssSetOutputPortSampleTime
and ssSetOutputPortOffsetTime initialize the output port sample time
to 1 with an offset of zero.

• Lastly, ssSetOptions sets two S-function options.
SS_OPTION_EXCEPTION_FREE_CODE stipulates that the code is exception free
and SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED indicates a combination of
block-based and port-based sample times.

The mdlInitializeSizes function for this example is shown below.

====================

* S-function methods *

8-88

C MEX S-Function Examples

====================/

/* Function: mdlInitializeSizes ===

* Abstract:

* Determine the S-function block's characteristics:

* number of inputs, outputs, states, etc.

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch reported by the Simulink engine*/

}

ssSetNumContStates(S, 1);

ssSetNumDiscStates(S, 1);

ssSetNumRWork(S, 1); /* for zoh output feeding the delay operator */

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 1);

ssSetInputPortDirectFeedThrough(S, 0, 1);

ssSetInputPortSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetInputPortOffsetTime(S, 0, 0.0);

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 1);

ssSetOutputPortSampleTime(S, 0, 1.0);

ssSetOutputPortOffsetTime(S, 0, 0.0);

ssSetNumSampleTimes(S, 2);

/* Take care when specifying exception free code - see sfuntmpl_doc.c. */

ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE |

SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED));

} /* end mdlInitializeSizes */

The required S-function method mdlInitializeSampleTimes specifies
the S-function block-based sample rates. The first call to ssSetSampleTime
specifies that the first sample rate is continuous, with the subsequent

8-89

8 Implementing Block Features

call to ssSetOffsetTime setting the offset to zero. The second call to this
pair of macros sets the second sample time to 1 with an offset of zero.
The S-function port-based sample times set in mdlInitializeSizes
must all be registered as a block-based sample time. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to use
the default rule to determine if referenced models containing this S-function
can inherit their sample times from the parent model.

/* Function: mdlInitializeSampleTimes ===

* Abstract:

* Two tasks: One continuous, one with discrete sample time of 1.0.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

ssSetSampleTime(S, 1, 1.0);

ssSetOffsetTime(S, 1, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

} /* end mdlInitializeSampleTimes */

The optional S-function method mdlInitializeConditions initializes the
continuous and discrete state vectors. The #define statement before this
method is required for the Simulink engine to call this function. In this
example, ssGetContStates obtains a pointer to the continuous state vector
and ssGetRealDiscStates obtains a pointer to the discrete state vector. The
method then sets all states’ initial conditions to one.

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ==

* Abstract:

* Initialize both continuous states to one.

*/

static void mdlInitializeConditions(SimStruct *S)

{

real_T *xC0 = ssGetContStates(S);

real_T *xD0 = ssGetRealDiscStates(S);

xC0[0] = 1.0;

8-90

C MEX S-Function Examples

xD0[0] = 1.0;

} /* end mdlInitializeConditions */

The required mdlOutputs function performs computations based on the
current task. The macro ssIsContinuousTask checks if the continuous task
is executing. If this macro returns true, ssIsSpecialSampleHit then checks
if the discrete sample rate is also executing. If this macro also returns
true, the method sets the value of the floating-point work vector to the
current value of the continuous state, via pointers obtained using ssGetRWork
and ssGetContStates, respectively. The mdlUpdate method later uses the
floating-point work vector as the input to the zero-order hold. Updating the
work vector in mdlOutputs ensures that the correct values are available
during subsequent calls to mdlUpdate. Finally, if the S-function is running
at its discrete rate, i.e., the call to ssIsSampleHit returns true, the method
sets the output to the value of the discrete state.

/* Function: mdlOutputs ===

* Abstract:

* y = xD, and update the zoh internal output.

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

/* update the internal "zoh" output */

if (ssIsContinuousTask(S, tid)) {

if (ssIsSpecialSampleHit(S, 1, 0, tid)) {

real_T *zoh = ssGetRWork(S);

real_T *xC = ssGetContStates(S);

*zoh = *xC;

}

}

/* y=xD */

if (ssIsSampleHit(S, 1, tid)) {

real_T *y = ssGetOutputPortRealSignal(S,0);

real_T *xD = ssGetRealDiscStates(S);

y[0]=xD[0];

}

8-91

8 Implementing Block Features

} /* end mdlOutputs */

The Simulink engine calls the mdlUpdate function once every major
integration time step to update the discrete states’ values. Because this
function is an optional method, a #define statement must precede the
function. The call to ssIsSampleHit ensures the body of the method is
executed only when the S-function is operating at its discrete rate. If
ssIsSampleHit returns true, the method obtains pointers to the S-function
discrete state and floating-point work vector and updates the discrete state’s
value using the value stored in the work vector.

#define MDL_UPDATE

/* Function: mdlUpdate ==

* Abstract:

* xD = xC

*/

static void mdlUpdate(SimStruct *S, int_T tid)

{

UNUSED_ARG(tid); /* not used in single tasking mode */

/* xD=xC */

if (ssIsSampleHit(S, 1, tid)) {

real_T *xD = ssGetRealDiscStates(S);

real_T *zoh = ssGetRWork(S);

xD[0]=*zoh;

}

} /* end mdlUpdate */

The mdlDerivatives function calculates the continuous state derivatives.
Because this function is an optional method, a #define statement must
precede the function. The function obtains pointers to the S-function
continuous state derivative and first input port then sets the continuous state
derivative equal to the value of the first input.

#define MDL_DERIVATIVES

/* Function: mdlDerivatives ===

* Abstract:

* xdot = U

*/

static void mdlDerivatives(SimStruct *S)

8-92

C MEX S-Function Examples

{

real_T *dx = ssGetdX(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/* xdot=U */

dx[0]=U(0);

} /* end mdlDerivatives */

The required mdlTerminate function performs any actions, such as freeing
memory, necessary at the end of the simulation. In this example, the function
is empty.

/* Function: mdlTerminate ===

* Abstract:

* No termination needed, but we are required to have this routine.

*/

static void mdlTerminate(SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

}

The S-function trailer includes the files necessary for simulation or code
generation, as follows.

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX file? */

#include "simulink.c" /* MEX file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

Note The mdlUpdate and mdlTerminate functions use the UNUSED_ARG macro
to indicate that an input argument the callback requires is not used. This
optional macro is defined in simstruc_types.h. If used, you must call this
macro once for each input argument that a callback does not use.

8-93

8 Implementing Block Features

Variable Sample Time
The example S-function vsfunc.c uses a variable-step sample time. The
following Simulink model uses this S-function.

sfcndemo_vsfunc

Variable step-size functions require a call to mdlGetTimeOfNextVarHit,
which is an S-function routine that calculates the time of the next sample hit.
S-functions that use the variable-step sample time can be used only with
variable-step solvers. The vsfunc.c example is a discrete S-function that
delays its first input by an amount of time determined by the second input.

The vsfunc.c example outputs the input u delayed by a variable amount
of time. mdlOutputs sets the output y equal to state x. mdlUpdate
sets the state vector x equal to u, the input vector. This example calls
mdlGetTimeOfNextVarHit to calculate and set the time of the next sample hit,
that is, the time when vsfunc.c is next called. In mdlGetTimeOfNextVarHit,
the macro ssGetInputPortRealSignalPtrs gets a pointer to the input u. Then
this call is made:

ssSetTNext(S, ssGetT(S) + U(1));

The macro ssGetT gets the simulation time t. The second input to the block,
U(1), is added to t, and the macro ssSetTNext sets the time of the next hit
equal to t+U(1), delaying the output by the amount of time set in (U(1)).

matlabroot/simulink/src/vsfunc.c
The S-function begins with #define statements for the S-function name and
level, along with a #include statement for the simstruc.h header. After
these statements, the S-function can include or define any other necessary
headers, data, etc. The vsfunc.c example defines U as a pointer to the first
input port’s signal.

/* File : vsfunc.c

* Abstract:

*

* Variable step S-function example.

* This example S-function illustrates how to create a variable step

* block. This block implements a variable step delay

8-94

C MEX S-Function Examples

* in which the first input is delayed by an amount of time determined

* by the second input:

*

* dt = u(2)

* y(t+dt) = u(t)

*

* For more details about S-functions, see simulink/src/sfuntmpl_doc.c.

*

* Copyright 1990-2007 The MathWorks, Inc.

*/

#define S_FUNCTION_NAME vsfunc

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

The required S-function method mdlInitializeSizes then sets up the
following S-function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog
parameters to zero.

• ssGetSFcnParamsCount determines how many parameters the user actually
entered into the S-function dialog. If the number of user-specified
parameters does not match the number returned by ssGetNumSFcnParams,
the S-function errors out.

• If the S-function parameter count passes, mdlInitializeSizes next sets
the number of continuous and discrete states using ssSetNumContStates
and ssSetNumDiscStates, respectively. This example has no continuous
states and one discrete state.

• Next, the method uses ssSetNumInputPorts and ssSetNumOutputPorts to
configure the S-function to have a single input and output port. Calls
to ssSetInputPortWidth and ssSetOutputPortWidth assign widths
to these input and output ports. The method passes a value of 1 to
ssSetInputPortDirectFeedThrough to indicate the input port has direct
feedthrough.

8-95

8 Implementing Block Features

• ssSetNumSampleTimes then initializes one sample time, which the
mdlInitializeSampleTimes function configures later.

• The S-function indicates that no work vectors are used by passing a value
of 0 to ssSetNumRWork, ssSetNumIWork, etc. You can omit these lines because
zero is the default value for all of these macros. However, for clarity, the
S-function explicitly sets the number of work vectors.

• Next, ssGetSimMode checks if the S-function is being run in a
simulation or by the Simulink Coder product. If ssGetSimMode returns
SS_SIMMODE_RTWGEN and ssIsVariableStepSolver returns false, indicating
use with the Simulink Coder product and a fixed-step solver, then the
S-function errors out.

• Lastly, ssSetOptions sets any applicable options. In this case, the only
option is SS_OPTION_EXCEPTION_FREE_CODE, which stipulates that the
code is exception free.

The mdlInitializeSizes function for this example is shown below.

/* Function: mdlInitializeSizes ===

* Abstract:

* Determine the S-function block's characteristics:

* number of inputs, outputs, states, etc.

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch reported by the Simulink engine*/

}

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 1);

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 2);

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 1);

8-96

C MEX S-Function Examples

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

if (ssGetSimMode(S) == SS_SIMMODE_RTWGEN && !ssIsVariableStepSolver(S)) {

ssSetErrorStatus(S, "S-function vsfunc.c cannot be used with RTW "

"and Fixed-Step Solvers because it contains variable"

" sample time");

}

/* Take care when specifying exception free code - see sfuntmpl_doc.c */

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

The required S-function method mdlInitializeSampleTimes specifies
the S-function sample rates. The input argument VARIABLE_SAMPLE_TIME
passed to ssSetSampleTime specifies that this S-function has a variable-step
sample time and ssSetOffsetTime specifies an offset time of zero. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to use
the default rule to determine if referenced models containing this S-function
can inherit their sample times from the parent model. Because the S-function
has a variable-step sample time, vsfunc.c must calculate the time of the next
sample hit in the mdlGetTimeOfNextVarHit method, shown later.

/* Function: mdlInitializeSampleTimes ===

* Abstract:

* Variable-Step S-function

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, VARIABLE_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

The optional S-function method mdlInitializeConditions initializes the
discrete state vector. The #define statement before this method is required

8-97

8 Implementing Block Features

for the Simulink engine to call this function. In the example, the method
uses ssGetRealDiscStates to obtain a pointer to the discrete state vector and
sets the state’s initial value to zero.

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ==

* Abstract:

* Initialize discrete state to zero.

*/

static void mdlInitializeConditions(SimStruct *S)

{

real_T *x0 = ssGetRealDiscStates(S);

x0[0] = 0.0;

}

The optional mdlGetTimeOfNextVarHit method calculates the time of the
next sample hit. Because this method is optional, a #define statement
precedes it. First, this method obtains a pointer to the first input port’s signal
using ssGetInputPortRealSignalPtrs. If the input signal’s second element is
positive, the macro ssGetT gets the simulation time t. The macro ssSetTNext
sets the time of the next hit equal to t+(*U[1]), delaying the output by the
amount of time specified by the input’s second element (*U[1]).

#define MDL_GET_TIME_OF_NEXT_VAR_HIT

static void mdlGetTimeOfNextVarHit(SimStruct *S)

{

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/* Make sure input will increase time */

if (U(1) <= 0.0) {

/* If not, abort simulation */

ssSetErrorStatus(S,"Variable step control input must be "

"greater than zero");

return;

}

ssSetTNext(S, ssGetT(S)+U(1));

}

8-98

C MEX S-Function Examples

The required mdlOutputs function computes the S-function output signal.
The function obtains pointers to the first output port and discrete state and
then assigns the state’s current value to the output.

/* Function: mdlOutputs ===

* Abstract:

* y = x

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

real_T *y = ssGetOutputPortRealSignal(S,0);

real_T *x = ssGetRealDiscStates(S);

/* Return the current state as the output */

y[0] = x[0];

}

The mdlUpdate function updates the discrete state’s value. Because this
method is optional, a #define statement precedes it. The function first
obtains pointers to the S-function discrete state and first input port then
assigns the value of the first element of the first input port signal to the state.

#define MDL_UPDATE

/* Function: mdlUpdate ==

* Abstract:

* This function is called once for every major integration time step.

* Discrete states are typically updated here, but this function is useful

* for performing any tasks that should only take place once per integration

* step.

*/

static void mdlUpdate(SimStruct *S, int_T tid)

{

real_T *x = ssGetRealDiscStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

x[0]=U(0);

}

8-99

8 Implementing Block Features

The required mdlTerminate function performs any actions, such as freeing
memory, necessary at the end of the simulation. In this example, the function
is empty.

/* Function: mdlTerminate ===

* Abstract:

* No termination needed, but we are required to have this routine.

*/

static void mdlTerminate(SimStruct *S)

{

}

The required S-function trailer includes the files necessary for simulation or
code generation, as follows.

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX file? */

#include "simulink.c" /* MEX file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

Array Inputs and Outputs
The example S-function sfun_matadd.c demonstrates how to implement a
matrix addition block. The following Simulink model uses this S-function.

sfcndemo_matadd

The S-function adds signals of various dimensions to a parameter value
entered in the S-function. The S-function accepts and outputs 2-D or n-D
signals.

matlabroot/simulink/src/sfun_matadd.c
The S-function begins with #define statements for the S-function name and
level, along with a #include statement for the simstruc.h header. After
these statements, the S-function includes or defines any other necessary
headers, data, etc. This example defines additional variables for the number
of S-function parameters, the S-function parameter value, and the flag
EDIT_OK that indicates if the parameter value can be edited during simulation.

8-100

C MEX S-Function Examples

/* SFUN_MATADD matrix support example.

* C MEX S-function for matrix addition with one input port,

* one output port, and one parameter.

*

* Input Signal: 2-D or n-D array

* Parameter: 2-D or n-D array

* Output Signal: 2-D or n-D array

*

* Input parameter output

* --------------------------------

* scalar scalar scalar

* scalar matrix matrix (input scalar expansion)

* matrix scalar matrix (parameter scalar expansion)

* matrix matrix matrix

*

* Copyright 1990-2007 The MathWorks, Inc.

*/

#define S_FUNCTION_NAME sfun_matadd

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

enum {PARAM = 0, NUM_PARAMS};

#define PARAM_ARG ssGetSFcnParam(S, PARAM)

#define EDIT_OK(S, ARG) \

(!((ssGetSimMode(S) == SS_SIMMODE_SIZES_CALL_ONLY) \

&& mxIsEmpty(ARG)))

The S-function next implements the mdlCheckParameters method to validate
the S-function dialog parameters. The #ifdef statement checks that the
S-function is compiled as a MEX file, instead of for use with the Simulink
Coder product. Because mdlCheckParameters is optional, the S-function code
contains a #define statement to register the method. The body of the function
checks that the S-function parameter value is not empty. If the parameter
check fails, the S-function errors out with a call to ssSetErrorStatus.

#ifdef MATLAB_MEX_FILE

#define MDL_CHECK_PARAMETERS

8-101

8 Implementing Block Features

/* Function: mdlCheckParameters ================================

* Abstract:

* Verify parameter settings.

*/

static void mdlCheckParameters(SimStruct *S)

{

if(EDIT_OK(S, PARAM_ARG)){

/* Check that parameter value is not empty*/

if(mxIsEmpty(PARAM_ARG)) {

ssSetErrorStatus(S, "Invalid parameter specified. The"

"parameter must be non-empty");

return;

}

}

} /* end mdlCheckParameters */

#endif

The required S-function method mdlInitializeSizes then sets up the
following S-function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog
parameters to one, as defined by the variable NUM_PARAMS.

• If this S-function is compiled as a MEX file, ssGetSFcnParamsCount
determines how many parameters the user actually entered into
the S-function dialog. If the number of user-specified parameters
matches the number returned by ssGetNumSFcnParams, the method calls
mdlCheckParameters to validate the user-entered data. Otherwise, the
S-function errors out.

• If the parameter check passes, the S-function specifies that all S-function
parameters are tunable using ssSetSFcnParamTunable.

• The S-function then invokes ssAllowSignalsWithMoreThan2D to allow the
S-function to accept n-D signals.

• Next, ssSetNumOutputPorts and ssSetNumInputPorts specify that the
S-function has a single output port and a single input port.

• The S-function uses ssSetInputPortDimensionInfo to specify that the
input port is dynamically sized. In this case, the S-function needs to

8-102

C MEX S-Function Examples

implement an mdlSetInputPortDimensionInfo method to set the actual
input dimension.

• The output dimensions depend on the dimensions of the
S-function parameter. If the parameter is a scalar, the call to
ssSetOutputPortDimensionInfo specifies that the output port dimensions
are dynamically sized. If the parameter is a matrix, the output port
dimensions are initialized to the dimensions of the S-function parameter.
In this case, the macro DECL_AND_INIT_DIMSINFO initializes a dimsInfo
structure. The S-function assigns the width, size, and dimensions of the
S-function parameter into the dimsInfo structure and then passes this
structure to ssSetOutputPortDimensionInfo in order to set the output
port dimensions accordingly.

• The S-function specifies that the input port has direct feedthrough by
passing a value of 1 to ssSetInputPortDirectFeedThrough.

• ssSetNumSampleTimes initializes one sample time, to be configured later in
the mdlInitializeSampleTimes method.

• Lastly, ssSetOptions sets any applicable options. In this case,
SS_OPTION_EXCEPTION_FREE_CODE stipulates that the code is exception
free and SS_OPTION_WORKS_WITH_CODE_REUSE signifies that this S-function
is compatible with the subsystem code reuse feature of the Simulink Coder
product.

/* Function: mdlInitializeSizes ================================

* Abstract:

* Initialize the sizes array

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, NUM_PARAMS);

#if defined(MATLAB_MEX_FILE)

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; }

mdlCheckParameters(S);

if (ssGetErrorStatus(S) != NULL) return;

#endif

{

8-103

8 Implementing Block Features

int iParam = 0;

int nParam = ssGetNumSFcnParams(S);

for (iParam = 0; iParam < nParam; iParam++)

{

ssSetSFcnParamTunable(S, iParam, SS_PRM_TUNABLE);

}

}

/* Allow signal dimensions greater than 2 */

ssAllowSignalsWithMoreThan2D(S);

/* Set number of input and output ports */

if (!ssSetNumInputPorts(S,1)) return;

if (!ssSetNumOutputPorts(S,1)) return;

/* Set dimensions of input and output ports */

{

int_T pWidth = mxGetNumberOfElements(PARAM_ARG);

/* Input can be a scalar or a matrix signal. */

if(!ssSetInputPortDimensionInfo(S,0,DYNAMIC_DIMENSION)) {

return; }

if(pWidth == 1) {

/* Scalar parameter: output dimensions are unknown. */

if(!ssSetOutputPortDimensionInfo(S,0,DYNAMIC_DIMENSION)){

return; }

}

else{

/*

* Non-scalar parameter: output dimensions are the same

* as the parameter dimensions. To support n-D signals,

* must use a dimsInfo structure to specify dimensions.

*/

DECL_AND_INIT_DIMSINFO(di); /*Initializes structure*/

int_T pSize = mxGetNumberOfDimensions(PARAM_ARG);

const int_T *pDims = mxGetDimensions(PARAM_ARG);

di.width = pWidth;

di.numDims = pSize;

di.dims = pDims;

8-104

C MEX S-Function Examples

if(!ssSetOutputPortDimensionInfo(S, 0, &di)) return;

}

}

ssSetInputPortDirectFeedThrough(S, 0, 1);

ssSetNumSampleTimes(S, 1);

ssSetOptions(S,

SS_OPTION_WORKS_WITH_CODE_REUSE |

SS_OPTION_EXCEPTION_FREE_CODE);

} /* end mdlInitializeSizes */

The required S-function method mdlInitializeSampleTimes specifies
the S-function sample rates. To specify that this S-function inherits its
sample time from its driving block, the S-function calls ssSetSampleTime
with the input argument INHERITED_SAMPLE_TIME. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to use the
default rule to determine if referenced models containing this S-function can
inherit their sample times from the parent model.

/* Function: mdlInitializeSampleTimes ==========================

* Abstract:

* Initialize the sample times array.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

} /* end mdlInitializeSampleTimes */

The S-function calls the mdlSetWorkWidths method to register its run-time
parameters. Because mdlSetWorkWidths is an optional method, a #define
statement precedes it. The method first initializes a name for the run-time
parameter and then uses ssRegAllTunableParamsAsRunTimeParams to
register the run-time parameter.

/* Function: mdlSetWorkWidths ==================================

* Abstract:

* Set up run-time parameter.

*/

#define MDL_SET_WORK_WIDTHS

8-105

8 Implementing Block Features

static void mdlSetWorkWidths(SimStruct *S)

{

const char_T *rtParamNames[] = {"Operand"};

ssRegAllTunableParamsAsRunTimeParams(S, rtParamNames);

} /* end mdlSetWorkWidths */

The S-function mdlOutputs method uses a for loop to calculate the output as
the sum of the input and S-function parameter. The S-function handles n-D
arrays of data using a single index into the array.

/* Function: mdlOutputs ==

* Abstract:

* Compute the outputs of the S-function.

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

InputRealPtrsType uPtr = ssGetInputPortRealSignalPtrs(S,0);

real_T *y = ssGetOutputPortRealSignal(S,0);

const real_T *p = mxGetPr(PARAM_ARG);

int_T uWidth = ssGetInputPortWidth(S,0);

int_T pWidth = mxGetNumberOfElements(PARAM_ARG);

int_T yWidth = ssGetOutputPortWidth(S,0);

int i;

UNUSED_ARG(tid); /* not used in single tasking mode */

/*

* Note1: Matrix signals are stored in column major order.

* Note2: Access each matrix element by one index not two

* indices. For example, if the output signal is a

* [2x2] matrix signal,

* - -

* | y[0] y[2] |

* | y[1] y[3] |

* - -

* Output elements are stored as follows:

* y[0] --> row = 0, col = 0

* y[1] --> row = 1, col = 0

* y[2] --> row = 0, col = 1

8-106

C MEX S-Function Examples

* y[3] --> row = 1, col = 1

*/

for (i = 0; i < yWidth; i++) {

int_T uIdx = (uWidth == 1) ? 0 : i;

int_T pIdx = (pWidth == 1) ? 0 : i;

y[i] = *uPtr[uIdx] + p[pIdx];

}

} /* end mdlOutputs */

During signal propagation, the S-function calls the optional
mdlSetInputPortDimensionInfo method with the candidate input
port dimensions stored in dimsInfo. The #if defined statement
checks that the S-function is compiled as a MEX file. Because
mdlSetInputPortDimensionInfo is an optional method, a #define statement
precedes it. In mdlSetInputPortDimensionInfo, the S-function uses
ssSetInputPortDimensionInfo to set the dimensions of the input port to the
candidate dimensions. If the call to this macro succeeds, the S-function further
checks the candidate dimensions to ensure that the input signal is either a
2-D scalar or a matrix. If this condition is met and the output port dimensions
are still dynamically sized, the S-function calls ssSetOutputPortDimensionInfo
to set the dimension of the output port to the same candidate dimensions.
The ssSetOutputPortDimensionInfo macro cannot modify the output port
dimensions if they are already specified.

#if defined(MATLAB_MEX_FILE)

#define MDL_SET_INPUT_PORT_DIMENSION_INFO

/* Function: mdlSetInputPortDimensionInfo ======================

* Abstract:

* This routine is called with the candidate dimensions for

* an input port with unknown dimensions. If the proposed

* dimensions are acceptable, the routine should go ahead and

* set the actual port dimensions. If they are unacceptable

* an error should be generated via ssSetErrorStatus.

* Note that any other input or output ports whose dimensions

* are implicitly defined by virtue of knowing the dimensions

* of the given port can also have their dimensions set.

*/

static void mdlSetInputPortDimensionInfo(SimStruct *S,

8-107

8 Implementing Block Features

int_T port,

const DimsInfo_T *dimsInfo)

{

int_T pWidth = mxGetNumberOfElements(PARAM_ARG);

int_T pSize = mxGetNumberOfDimensions(PARAM_ARG);

const int_T *pDims = mxGetDimensions(PARAM_ARG);

int_T uNumDims = dimsInfo->numDims;

int_T uWidth = dimsInfo->width;

int_T *uDims = dimsInfo->dims;

int_T numDims;

boolean_T isOk = true;

int iParam = 0;

int_T outWidth = ssGetOutputPortWidth(S, 0);

/* Set input port dimension */

if(!ssSetInputPortDimensionInfo(S, port, dimsInfo)) return;

/*

* The block only accepts 2-D or higher signals. Check

* number of dimensions. If the parameter and the input

* signal are non-scalar, their dimensions must be the same.

*/

isOk = (uNumDims >= 2) && (pWidth == 1 || uWidth == 1 ||

pWidth == uWidth);

numDims = (pSize != uNumDims) ? numDims : uNumDims;

if(isOk && pWidth > 1 && uWidth > 1){

for (iParam = 0; iParam < numDims; iParam++) {

isOk = (pDims[iParam] == uDims[iParam]);

if(!isOk) break;

}

}

if(!isOk){

ssSetErrorStatus(S,"Invalid input port dimensions. The "

"input signal must be a 2-D scalar signal, or it must "

"be a matrix with the same dimensions as the parameter "

"dimensions.");

8-108

C MEX S-Function Examples

return;

}

/* Set the output port dimensions */

if (outWidth == DYNAMICALLY_SIZED){

if(!ssSetOutputPortDimensionInfo(S,port,dimsInfo)) return;

}

} /* end mdlSetInputPortDimensionInfo */

During signal propagation, if any output ports have unknown dimensions,
the S-function calls the optional mdlSetOutputPortDimensionInfo
method. Because this method is optional, a #define statement
precedes it. In mdlSetOutputPortDimensionInfo, the S-function uses
ssSetOutputPortDimensionInfo to set the dimensions of the output port to
the candidate dimensions dimsInfo. If the call to this macro succeeds, the
S-function further checks the candidate dimensions to ensure that the input
signal is either a 2-D or n-D matrix. If this condition is not met, the S-function
errors out with a call to ssSetErrorStatus. Otherwise, the S-function calls
ssSetInputPortDimensionInfo to set the dimension of the input port to the
same candidate dimensions.

define MDL_SET_OUTPUT_PORT_DIMENSION_INFO

/* Function: mdlSetOutputPortDimensionInfo =====================

* Abstract:

* This routine is called with the candidate dimensions for

* an output port with unknown dimensions. If the proposed

* dimensions are acceptable, the routine should go ahead and

* set the actual port dimensions. If they are unacceptable

* an error should be generated via ssSetErrorStatus.

* Note that any other input or output ports whose dimensions

* are implicitly defined by virtue of knowing the dimensions

* of the given port can also have their dimensions set.

*/

static void mdlSetOutputPortDimensionInfo(SimStruct *S,

int_T port,

const DimsInfo_T *dimsInfo)

{

/*

* If the block has scalar parameter, the output dimensions

* are unknown. Set the input and output port to have the

8-109

8 Implementing Block Features

* same dimensions.

*/

if(!ssSetOutputPortDimensionInfo(S, port, dimsInfo)) return;

/* The block only accepts 2-D or n-D signals.

* Check number of dimensions.

*/

if (!(dimsInfo->numDims >= 2)){

ssSetErrorStatus(S, "Invalid output port dimensions. "

"The output signal must be a 2-D or n-D array (matrix) "

"signal.");

return;

}else{

/* Set the input port dimensions */

if(!ssSetInputPortDimensionInfo(S,port,dimsInfo)) return;

}

} /* end mdlSetOutputPortDimensionInfo */

Because the S-function has ports that are dynamically sized, it must provide
an mdlSetDefaultPortDimensionInfo method. The Simulink engine
invokes this method during signal propagation when it cannot determine
the dimensionality of the signal connected to the block’s input port. This
situation can happen, for example, if the input port is unconnected. In this
example, the mdlSetDefaultPortDimensionInfo method sets the input and
output ports dimensions to a scalar.

define MDL_SET_DEFAULT_PORT_DIMENSION_INFO

/* Function: mdlSetDefaultPortDimensionInfo ====================

* This routine is called when the Simulink engine is not able

* to find dimension candidates for ports with unknown dimensions.

* This function must set the dimensions of all ports with

* unknown dimensions.

*/

static void mdlSetDefaultPortDimensionInfo(SimStruct *S)

{

int_T outWidth = ssGetOutputPortWidth(S, 0);

/* Input port dimension must be unknown. Set it to scalar.*/

if(!ssSetInputPortMatrixDimensions(S, 0, 1, 1)) return;

if(outWidth == DYNAMICALLY_SIZED){

/* Output dimensions are unknown. Set it to scalar. */

8-110

C MEX S-Function Examples

if(!ssSetOutputPortMatrixDimensions(S, 0, 1, 1)) return;

}

} /* end mdlSetDefaultPortDimensionInfo */

#endif

The required mdlTerminate function performs any actions, such as freeing
memory, necessary at the end of the simulation. In this example, the function
is empty.

/* Function: mdlTerminate ======================================

* Abstract:

* Called when the simulation is terminated.

*/

static void mdlTerminate(SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

} /* end mdlTerminate */

The required S-function trailer includes the files necessary for simulation or
code generation.

#ifdef MATLAB_MEX_FILE

#include "simulink.c"

#else

#include "cg_sfun.h"

#endif

/* [EOF] sfun_matadd.c */

Note The mdlOutputs and mdlTerminate functions use the UNUSED_ARG
macro to indicate that an input argument the callback requires is not used.
This optional macro is defined in simstruc_types.h. You must call this
macro once for each input argument that a callback does not use.

Zero-Crossing Detection
The example S-function sfun_zc_sat.c demonstrates how to implement a
Saturation block. The following Simulink model uses this S-function.

8-111

8 Implementing Block Features

sfcndemo_sfun_zc_sat

The S-function works with either fixed-step or variable-step solvers. When
this S-function inherits a continuous sample time and uses a variable-step
solver, it uses a zero-crossings algorithm to locate the exact points at which
the saturation occurs.

matlabroot/simulink/src/sfun_zc_sat.c
The S-function begins with #define statements for the S-function name and
level, along with a #include statement for the simstruc.h header. After
these statements, the S-function includes or defines any other necessary
headers, data, etc. This example defines various parameters associated with
the upper and lower saturation bounds.

/* File : sfun_zc_sat.c

* Abstract:

*

* Example of an S-function which has nonsampled zero crossings to

* implement a saturation function. This S-function is designed to be

* used with a variable or fixed step solver.

*

* A saturation is described by three equations

*

* (1) y = UpperLimit

* (2) y = u

* (3) y = LowerLimit

*

* and a set of inequalities that specify which equation to use

*

* if UpperLimit < u then use (1)

* if LowerLimit <= u <= UpperLimit then use (2)

* if u < LowerLimit then use (3)

*

* A key fact is that the valid equation 1, 2, or 3, can change at

* any instant. Nonsampled zero crossing support helps the variable step

* solvers locate the exact instants when behavior switches from one equation

* to another.

*

* Copyright 1990-2007 The MathWorks, Inc.

8-112

C MEX S-Function Examples

*/

#define S_FUNCTION_NAME sfun_zc_sat

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/*========================*

* General Defines/macros *

========================/

/* index to Upper Limit */

#define I_PAR_UPPER_LIMIT 0

/* index to Lower Limit */

#define I_PAR_LOWER_LIMIT 1

/* total number of block parameters */

#define N_PAR 2

/*

* Make access to mxArray pointers for parameters more readable.

*/

#define P_PAR_UPPER_LIMIT (ssGetSFcnParam(S,I_PAR_UPPER_LIMIT))

#define P_PAR_LOWER_LIMIT (ssGetSFcnParam(S,I_PAR_LOWER_LIMIT))

This S-function next implements the mdlCheckParameters method to check
the validity of the S-function dialog parameters. Because this method is
optional, a #define statement precedes it. The #if defined statement
checks that this function is compiled as a MEX file, instead of for use with the
Simulink Coder product. The body of the function performs basic checks to
ensure that the user entered real vectors of equal length for the upper and
lower saturation limits. If the parameter checks fail, the S-function errors out.

#define MDL_CHECK_PARAMETERS

#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)

/* Function: mdlCheckParameters ===

* Abstract:

8-113

8 Implementing Block Features

* Check that parameter choices are allowable.

*/

static void mdlCheckParameters(SimStruct *S)

{

int_T i;

int_T numUpperLimit;

int_T numLowerLimit;

const char *msg = NULL;

/*

* check parameter basics

*/

for (i = 0; i < N_PAR; i++) {

if (mxIsEmpty(ssGetSFcnParam(S,i)) ||

mxIsSparse(ssGetSFcnParam(S,i)) ||

mxIsComplex(ssGetSFcnParam(S,i)) ||

!mxIsNumeric(ssGetSFcnParam(S,i))) {

msg = "Parameters must be real vectors.";

goto EXIT_POINT;

}

}

/*

* Check sizes of parameters.

*/

numUpperLimit = mxGetNumberOfElements(P_PAR_UPPER_LIMIT);

numLowerLimit = mxGetNumberOfElements(P_PAR_LOWER_LIMIT);

if ((numUpperLimit != 1) &&

(numLowerLimit != 1) &&

(numUpperLimit != numLowerLimit)) {

msg = "Number of input and output values must be equal.";

goto EXIT_POINT;

}

/*

* Error exit point

*/

EXIT_POINT:

if (msg != NULL) {

8-114

C MEX S-Function Examples

ssSetErrorStatus(S, msg);

}

}

#endif /* MDL_CHECK_PARAMETERS */

The required S-function method mdlInitializeSizes sets up the following
S-function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog
parameters to two, as defined previously in the variable N_PAR.

• If this method is compiled as a MEX file, ssGetSFcnParamsCount determines
how many parameters the user actually entered into the S-function dialog.
If the number of user-specified parameters matches the number returned
by ssGetNumSFcnParams, the method calls mdlCheckParameters to check the
validity of the user-entered data. Otherwise, the S-function errors out.

• If the parameter check passes, the S-function determines the maximum
number of elements entered into either the upper or lower saturation limit
parameter. This number is needed later to determine the appropriate
output width.

• Next, the number of continuous and discrete states is set using
ssSetNumContStates and ssSetNumDiscStates, respectively. This example
has no continuous or discrete states.

• The method specifies that the S-function has a single output port
using ssSetNumOutputPorts and sets the width of this output port
using ssSetOutputPortWidth. The output port width is either the
maximum number of elements in the upper or lower saturation limit
or is dynamically sized. Similar code specifies a single input port and
indicates the input port has direct feedthrough by passing a value of 1 to
ssSetInputPortDirectFeedThrough.

• ssSetNumSampleTimes initializes one sample time, which the
mdlInitializeSampleTimes function configures later.

• The S-function indicates that no work vectors are used by passing a value
of 0 to ssSetNumRWork, ssSetNumIWork, etc. You can omit these lines because
zero is the default value for all of these macros. However, for clarity, the
S-function explicitly sets the number of work vectors.

8-115

8 Implementing Block Features

• The method initializes the zero-crossing detection work vectors using
ssSetNumModes and ssSetNumNonsampledZCs. The mdlSetWorkWidthsmethod
specifies the length of these dynamically sized vectors later.

• Lastly, ssSetOptions sets any applicable options. In this case,
SS_OPTION_EXCEPTION_FREE_CODE stipulates that the code is exception free
and SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION permits scalar expansion
of the input without having to provide an mdlSetInputPortWidth function.

The mdlInitializeSizes function for this example is shown below.

/* Function: mdlInitializeSizes ===

* Abstract:

* Initialize the sizes array.

*/

static void mdlInitializeSizes(SimStruct *S)

{

int_T numUpperLimit, numLowerLimit, maxNumLimit;

/*

* Set and Check parameter count

*/

ssSetNumSFcnParams(S, N_PAR);

#if defined(MATLAB_MEX_FILE)

if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

mdlCheckParameters(S);

if (ssGetErrorStatus(S) != NULL) {

return;

}

} else {

return; /* Parameter mismatch reported by the Simulink engine*/

}

#endif

/*

* Get parameter size info.

*/

numUpperLimit = mxGetNumberOfElements(P_PAR_UPPER_LIMIT);

numLowerLimit = mxGetNumberOfElements(P_PAR_LOWER_LIMIT);

8-116

C MEX S-Function Examples

if (numUpperLimit > numLowerLimit) {

maxNumLimit = numUpperLimit;

} else {

maxNumLimit = numLowerLimit;

}

/*

* states

*/

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);

/*

* outputs

* The upper and lower limits are scalar expanded

* so their size determines the size of the output

* only if at least one of them is not scalar.

*/

if (!ssSetNumOutputPorts(S, 1)) return;

if (maxNumLimit > 1) {

ssSetOutputPortWidth(S, 0, maxNumLimit);

} else {

ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

}

/*

* inputs

* If the upper or lower limits are not scalar then

* the input is set to the same size. However, the

* ssSetOptions below allows the actual width to

* be reduced to 1 if needed for scalar expansion.

*/

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (maxNumLimit > 1) {

ssSetInputPortWidth(S, 0, maxNumLimit);

} else {

8-117

8 Implementing Block Features

ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

}

/*

* sample times

*/

ssSetNumSampleTimes(S, 1);

/*

* work

*/

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

/*

* Modes and zero crossings:

* If we have a variable-step solver and this block has a continuous

* sample time, then

* o One mode element will be needed for each scalar output

* in order to specify which equation is valid (1), (2), or (3).

* o Two ZC elements will be needed for each scalar output

* in order to help the solver find the exact instants

* at which either of the two possible "equation switches"

* One will be for the switch from eq. (1) to (2);

* the other will be for eq. (2) to (3) and vice versa.

* otherwise

* o No modes and nonsampled zero crossings will be used.

*

*/

ssSetNumModes(S, DYNAMICALLY_SIZED);

ssSetNumNonsampledZCs(S, DYNAMICALLY_SIZED);

/*

* options

* o No mexFunctions and no problematic mxFunctions are called

* so the exception free code option safely gives faster simulations.

* o Scalar expansion of the inputs is desired. The option provides

* this without the need to write mdlSetOutputPortWidth and

8-118

C MEX S-Function Examples

* mdlSetInputPortWidth functions.

*/

ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE |

SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION));

} /* end mdlInitializeSizes */

The required S-function method mdlInitializeSampleTimes
specifies the S-function sample rates. The input argument
INHERITED_SAMPLE_TIME passed to ssSetSampleTime specifies that this
S-function inherits its sample time from its driving block. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to use
the default rule to determine if referenced models containing this S-function
can inherit their sample times from the parent model.

/* Function: mdlInitializeSampleTimes ===

* Abstract:

* Specify that the block is continuous.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

The optional method mdlSetWorkWidths initializes the size of the
zero-crossing detection work vectors. Because this method is optional, a
#define statement precedes it. The #if defined statement checks that
the S-function is being compiled as a MEX file. Zero-crossing detection can
be done only when the S-function is running at a continuous sample rate
using a variable-step solver. The if statement uses ssIsVariableStepSolver,
ssGetSampleTime, and ssGetOffsetTime to determine if this condition is met. If
so, the method sets the number of modes equal to the width of the first output
port and the number of nonsampled zero crossings to twice this amount.
Otherwise, the method sets both values to zero.

#define MDL_SET_WORK_WIDTHS

#if defined(MDL_SET_WORK_WIDTHS) && defined(MATLAB_MEX_FILE)

/* Function: mdlSetWorkWidths ===

8-119

8 Implementing Block Features

* The width of the Modes and the ZCs depends on the width of the output.

* This width is not always known in mdlInitializeSizes so it is handled

* here.

*/

static void mdlSetWorkWidths(SimStruct *S)

{

int nModes;

int nNonsampledZCs;

if (ssIsVariableStepSolver(S) &&

ssGetSampleTime(S,0) == CONTINUOUS_SAMPLE_TIME &&

ssGetOffsetTime(S,0) == 0.0) {

int numOutput = ssGetOutputPortWidth(S, 0);

/*

* modes and zero crossings

* o One mode element will be needed for each scalar output

* in order to specify which equation is valid (1), (2), or (3).

* o Two ZC elements will be needed for each scalar output

* in order to help the solver find the exact instants

* at which either of the two possible "equation switches"

* One will be for the switch from eq. (1) to (2);

* the other will be for eq. (2) to (3) and vice versa.

*/

nModes = numOutput;

nNonsampledZCs = 2 * numOutput;

} else {

nModes = 0;

nNonsampledZCs = 0;

}

ssSetNumModes(S,nModes);

ssSetNumNonsampledZCs(S,nNonsampledZCs);

}

#endif /* MDL_SET_WORK_WIDTHS */

After declaring variables for the input and output signals, the mdlOutputs
functions uses an if-else statement to create blocks of code used to calculate
the output signal based on whether the S-function uses a fixed-step or
variable-step solver. The if statement queries the length of the nonsampled

8-120

C MEX S-Function Examples

zero-crossing vector. If the length, set in mdlWorkWidths, is zero, then no
zero-crossing detection is done and the output signals are calculated directly
from the input signals. Otherwise, the function uses the mode work vector to
determine how to calculate the output signal. If the simulation is at a major
time step, i.e., ssIsMajorTimeStep returns true, mdlOutputs determines
which mode the simulation is running in, either saturated at the upper limit,
saturated at the lower limit, or not saturated. Then, for both major and minor
time steps, the function calculates an output based on this mode. If the mode
changed between the previous and current time step, then a zero crossing
occurred. The mdlZeroCrossings function, not mdlOutputs, indicates this
crossing to the solver.

/* Function: mdlOutputs ===

* Abstract:

*

* A saturation is described by three equations

*

* (1) y = UpperLimit

* (2) y = u

* (3) y = LowerLimit

*

* When this block is used with a fixed-step solver or it has a noncontinuous

* sample time, the equations are used as it

*

* Now consider the case of this block being used with a variable-step solver

* and it has a continusous sample time. Solvers work best on smooth problems.

* In order for the solver to work without chattering, limit cycles, or

* similar problems, it is absolutely crucial that the same equation be used

* throughout the duration of a MajorTimeStep. To visualize this, consider

* the case of the Saturation block feeding an Integrator block.

*

* To implement this rule, the mode vector is used to specify the

* valid equation based on the following:

*

* if UpperLimit < u then use (1)

* if LowerLimit <= u <= UpperLimit then use (2)

* if u < LowerLimit then use (3)

*

* The mode vector is changed only at the beginning of a MajorTimeStep.

*

8-121

8 Implementing Block Features

* During a minor time step, the equation specified by the mode vector

* is used without question. Most of the time, the value of u will agree

* with the equation specified by the mode vector. However, sometimes u's

* value will indicate a different equation. Nonetheless, the equation

* specified by the mode vector must be used.

*

* When the mode and u indicate different equations, the corresponding

* calculations are not correct. However, this is not a problem. From

* the ZC function, the solver will know that an equation switch occurred

* in the middle of the last MajorTimeStep. The calculations for that

* time step will be discarded. The ZC function will help the solver

* find the exact instant at which the switch occurred. Using this knowledge,

* the length of the MajorTimeStep will be reduced so that only one equation

* is valid throughout the entire time step.

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

real_T *y = ssGetOutputPortRealSignal(S,0);

int_T numOutput = ssGetOutputPortWidth(S,0);

int_T iOutput;

/*

* Set index and increment for input signal, upper limit, and lower limit

* parameters so that each gives scalar expansion if needed.

*/

int_T uIdx = 0;

int_T uInc = (ssGetInputPortWidth(S,0) > 1);

const real_T *upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);

int_T upperLimitInc = (mxGetNumberOfElements(P_PAR_UPPER_LIMIT) > 1);

const real_T *lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

int_T lowerLimitInc = (mxGetNumberOfElements(P_PAR_LOWER_LIMIT) > 1);

UNUSED_ARG(tid); /* not used in single tasking mode */

if (ssGetNumNonsampledZCs(S) == 0) {

/*

* This block is being used with a fixed-step solver or it has

* a noncontinuous sample time, so we always saturate.

*/

8-122

C MEX S-Function Examples

for (iOutput = 0; iOutput < numOutput; iOutput++) {

if (*uPtrs[uIdx] >= *upperLimit) {

*y++ = *upperLimit;

} else if (*uPtrs[uIdx] > *lowerLimit) {

*y++ = *uPtrs[uIdx];

} else {

*y++ = *lowerLimit;

}

upperLimit += upperLimitInc;

lowerLimit += lowerLimitInc;

uIdx += uInc;

}

} else {

/*

* This block is being used with a variable-step solver.

*/

int_T *mode = ssGetModeVector(S);

/*

* Specify indices for each equation.

*/

enum { UpperLimitEquation, NonLimitEquation, LowerLimitEquation };

/*

* Update the Mode Vector ONLY at the beginning of a MajorTimeStep

*/

if (ssIsMajorTimeStep(S)) {

/*

* Specify the mode, ie the valid equation for each output scalar.

*/

for (iOutput = 0; iOutput < numOutput; iOutput++) {

if (*uPtrs[uIdx] > *upperLimit) {

/*

* Upper limit eq is valid.

*/

mode[iOutput] = UpperLimitEquation;

} else if (*uPtrs[uIdx] < *lowerLimit) {

/*

8-123

8 Implementing Block Features

* Lower limit eq is valid.

*/

mode[iOutput] = LowerLimitEquation;

} else {

/*

* Nonlimit eq is valid.

*/

mode[iOutput] = NonLimitEquation;

}

/*

* Adjust indices to give scalar expansion if needed.

*/

uIdx += uInc;

upperLimit += upperLimitInc;

lowerLimit += lowerLimitInc;

}

/*

* Reset index to input and limits.

*/

uIdx = 0;

upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);

lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

} /* end IsMajorTimeStep */

/*

* For both MinorTimeSteps and MajorTimeSteps calculate each scalar

* output using the equation specified by the mode vector.

*/

for (iOutput = 0; iOutput < numOutput; iOutput++) {

if (mode[iOutput] == UpperLimitEquation) {

/*

* Upper limit eq.

*/

*y++ = *upperLimit;

} else if (mode[iOutput] == LowerLimitEquation) {

/*

* Lower limit eq.

*/

8-124

C MEX S-Function Examples

*y++ = *lowerLimit;

} else {

/*

* Nonlimit eq.

*/

*y++ = *uPtrs[uIdx];

}

/*

* Adjust indices to give scalar expansion if needed.

*/

uIdx += uInc;

upperLimit += upperLimitInc;

lowerLimit += lowerLimitInc;

}

}

} /* end mdlOutputs */

The mdlZeroCrossings method determines if a zero crossing occurred
between the previous and current time step. The method obtains a pointer
to the input signal using ssGetInputPortRealSignalPtrs. A comparison of
this signal’s value to the value of the upper and lower saturation limits
determines values for the elements of the nonsampled zero-crossing vector. If
any element of the nonsampled zero-crossing vector switches from negative
to positive, or positive to negative, a zero crossing occurred. In the event of
a zero crossing, the Simulink engine modifies the step size and recalculates
the outputs to try to locate the exact zero crossing.

#define MDL_ZERO_CROSSINGS

#if defined(MDL_ZERO_CROSSINGS) && (defined(MATLAB_MEX_FILE) || defined(NRT))

/* Function: mdlZeroCrossings ===

* Abstract:

* This will only be called if the number of nonsampled zero crossings is

* greater than 0 which means this block has a continuous sample time and the

* model is using a variable-step solver.

*

* Calculate zero crossing (ZC) signals that help the solver find the

* exact instants at which equation switches occur:

*

8-125

8 Implementing Block Features

* if UpperLimit < u then use (1)

* if LowerLimit <= u <= UpperLimit then use (2)

* if u < LowerLimit then use (3)

*

* The key words are help find. There is no choice of a function that will

* direct the solver to the exact instant of the change. The solver will

* track the zero crossing signal and do a bisection style search for the

* exact instant of equation switch.

*

* There is generally one ZC signal for each pair of signals that can

* switch. The three equations above would break into two pairs (1)&(2)

* and (2)&(3). The possibility of a "long jump" from (1) to (3) does

* not need to be handled as a separate case. It is implicitly handled.

*

* When ZCs are calculated, the value is normally used twice. When it is

* first calculated, it is used as the end of the current time step. Later,

* it will be used as the beginning of the following step.

*

* The sign of the ZC signal always indicates an equation from the pair. For

* S-functions, which equation is associated with a positive ZC and which is

* associated with a negative ZC doesn't really matter. If the ZC is positive

* at the beginning and at the end of the time step, this implies that the

* "positive" equation was valid throughout the time step. Likewise, if the

* ZC is negative at the beginning and at the end of the time step, this

* implies that the "negative" equation was valid throughout the time step.

* Like any other nonlinear solver, this is not foolproof, but it is an

* excellent indicator. If the ZC has a different sign at the beginning and

* at the end of the time step, then a equation switch definitely occurred

* during the time step.

*

* Ideally, the ZC signal gives an estimate of when an equation switch

* occurred. For example, if the ZC signal is -2 at the beginning and +6 at

* the end, then this suggests that the switch occurred

* 25% = 100%*(-2)/(-2-(+6)) of the way into the time step. It will almost

* never be true that 25% is perfectly correct. There is no perfect choice

* for a ZC signal, but there are some good rules. First, choose the ZC

* signal to be continuous. Second, choose the ZC signal to give a monotonic

* measure of the "distance" to a signal switch; strictly monotonic is ideal.

*/

static void mdlZeroCrossings(SimStruct *S)

8-126

C MEX S-Function Examples

{

int_T iOutput;

int_T numOutput = ssGetOutputPortWidth(S,0);

real_T *zcSignals = ssGetNonsampledZCs(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/*

* Set index and increment for the input signal, upper limit, and lower

* limit parameters so that each gives scalar expansion if needed.

*/

int_T uIdx = 0;

int_T uInc = (ssGetInputPortWidth(S,0) > 1);

real_T *upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);

int_T upperLimitInc = (mxGetNumberOfElements(P_PAR_UPPER_LIMIT) > 1);

real_T *lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

int_T lowerLimitInc = (mxGetNumberOfElements(P_PAR_LOWER_LIMIT) > 1);

/*

* For each output scalar, give the solver a measure of "how close things

* are" to an equation switch.

*/

for (iOutput = 0; iOutput < numOutput; iOutput++) {

/* The switch from eq (1) to eq (2)

*

* if UpperLimit < u then use (1)

* if LowerLimit <= u <= UpperLimit then use (2)

*

* is related to how close u is to UpperLimit. A ZC choice

* that is continuous, strictly monotonic, and is

* u - UpperLimit

* or it is negative.

*/

zcSignals[2*iOutput] = *uPtrs[uIdx] - *upperLimit;

/* The switch from eq (2) to eq (3)

*

* if LowerLimit <= u <= UpperLimit then use (2)

* if u < LowerLimit then use (3)

*

8-127

8 Implementing Block Features

* is related to how close u is to LowerLimit. A ZC choice

* that is continuous, strictly monotonic, and is

* u - LowerLimit.

*/

zcSignals[2*iOutput+1] = *uPtrs[uIdx] - *lowerLimit;

/*

* Adjust indices to give scalar expansion if needed.

*/

uIdx += uInc;

upperLimit += upperLimitInc;

lowerLimit += lowerLimitInc;

}

}

#endif /* end mdlZeroCrossings */

The S-function concludes with the required mdlTerminate function. In this
example, the function is empty.

/* Function: mdlTerminate ===

* Abstract:

* No termination needed, but we are required to have this routine.

*/

static void mdlTerminate(SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

}

The required S-function trailer includes the files necessary for simulation or
code generation, as follows.

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX file? */

#include "simulink.c" /* MEX file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

8-128

C MEX S-Function Examples

Note The mdlOutputs and mdlTerminate functions use the UNUSED_ARG
macro to indicate that an input argument the callback requires is not used.
This optional macro is defined in simstruc_types.h. If used, you must call
this macro once for each input argument that a callback does not use.

Discontinuities in Continuous States
The example S-function stvctf.c demonstrates a time-varying continuous
transfer function. The following Simulink model uses this S-function.

sfcndemo_stvctf

The S-function demonstrates how to work with the solvers so that the
simulation maintains consistency, which means that the block maintains
smooth and consistent signals for the integrators although the equations that
are being integrated are changing.

matlabroot/simulink/src/stvctf.c
The S-function begins with #define statements for the S-function name and
level, along with a #include statement for the simstruc.h header. After
these statements, the S-function includes or defines any other necessary
headers, data, etc. This example defines parameters for the transfer
function’s numerator and denominator, which are entered into the S-function
dialog. The comments at the beginning of this S-function provide additional
information on the purpose of the work vectors in this example.

/*

* File : stvctf.c

* Abstract:

* Time Varying Continuous Transfer Function block

*

* This S-function implements a continuous time transfer function

* whose transfer function polynomials are passed in via the input

* vector. This is useful for continuous time adaptive control

* applications.

*

* This S-function is also an example of how to use banks to avoid

* problems with computing derivatives when a continuous output has

8-129

8 Implementing Block Features

* discontinuities. The consistency checker can be used to verify that

* your S-function is correct with respect to always maintaining smooth

* and consistent signals for the integrators. By consistent we mean that

* two mdlOutputs calls at major time t and minor time t are always the

* same. The consistency checker is enabled on the diagnostics page of the

* Configuraion parameters dialog box. The update method of this S-function

* modifies the coefficients of the transfer function, which cause the

* output to "jump." To have the simulation work properly, we need to let

* the solver know of these discontinuities by setting

* ssSetSolverNeedsReset and then we need to use multiple banks of

* coefficients so the coefficients used in the major time step output

* and the minor time step outputs are the same. In the simulation loop

* we have:

* Loop:

* o Output in major time step at time t

* o Update in major time step at time t

* o Integrate (minor time step):

* o Consistency check: recompute outputs at time t and compare

* with current outputs.

* o Derivatives at time t

* o One or more Output,Derivative evaluations at time t+k

* where k <= step_size to be taken.

* o Compute state, x

* o t = t + step_size

* End_Integrate

* End_Loop

* Another purpose of the consistency checker is to verify that when

* the solver needs to try a smaller step_size, the recomputing of

* the output and derivatives at time t doesn't change. Step size

* reduction occurs when tolerances aren't met for the current step size.

* The ideal ordering would be to update after integrate. To achieve

* this we have two banks of coefficients. And the use of the new

* coefficients, which were computed in update, is delayed until after

* the integrate phase is complete.

*

* This block has multiple sample times and will not work correctly

* in a multitasking environment. It is designed to be used in

* a single tasking (or variable step) simulation environment.

* Because this block accesses the input signal in both tasks,

* it cannot specify the sample times of the input and output ports

8-130

C MEX S-Function Examples

* (SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED).

*

* See simulink/src/sfuntmpl_doc.c.

*

* Copyright 1990-7 The MathWorks, Inc.

*/

#define S_FUNCTION_NAME stvctf

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/*

* Defines for easy access to the numerator and denominator polynomials

* parameters

*/

#define NUM(S) ssGetSFcnParam(S, 0)

#define DEN(S) ssGetSFcnParam(S, 1)

#define TS(S) ssGetSFcnParam(S, 2)

#define NPARAMS 3

This S-function implements the mdlCheckParameters method to check the
validity of the S-function dialog parameters. Because this method is optional,
a #define statement precedes it. The #if defined statement checks that
this function is compiled as a MEX file, instead of for use with the Simulink
Coder product. The body of the function performs basic checks to ensure that
the user entered real vectors for the numerator and denominator, and that
the denominator has a higher order than the numerator. If the parameter
check fails, the S-function errors out.

#define MDL_CHECK_PARAMETERS

#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)

/* Function: mdlCheckParameters ===

* Abstract:

* Validate our parameters to verify:

* o The numerator must be of a lower order than the denominator.

* o The sample time must be a real positive nonzero value.

*/

static void mdlCheckParameters(SimStruct *S)

{

8-131

8 Implementing Block Features

int_T i;

for (i = 0; i < NPARAMS; i++) {

real_T *pr;

int_T el;

int_T nEls;

if (mxIsEmpty(ssGetSFcnParam(S,i)) ||

mxIsSparse(ssGetSFcnParam(S,i)) ||

mxIsComplex(ssGetSFcnParam(S,i)) ||

!mxIsNumeric(ssGetSFcnParam(S,i))) {

ssSetErrorStatus(S,"Parameters must be real finite vectors");

return;

}

pr = mxGetPr(ssGetSFcnParam(S,i));

nEls = mxGetNumberOfElements(ssGetSFcnParam(S,i));

for (el = 0; el < nEls; el++) {

if (!mxIsFinite(pr[el])) {

ssSetErrorStatus(S,"Parameters must be real finite vectors");

return;

}

}

}

if (mxGetNumberOfElements(NUM(S)) > mxGetNumberOfElements(DEN(S)) &&

mxGetNumberOfElements(DEN(S)) > 0 && *mxGetPr(DEN(S)) != 0.0) {

ssSetErrorStatus(S,"The denominator must be of higher order than "

"the numerator, nonempty and with first "

"element nonzero");

return;

}

/* xxx verify finite */

if (mxGetNumberOfElements(TS(S)) != 1 || mxGetPr(TS(S))[0] <= 0.0) {

ssSetErrorStatus(S,"Invalid sample time specified");

return;

}

}

#endif /* MDL_CHECK_PARAMETERS */

8-132

C MEX S-Function Examples

The required S-function method mdlInitializeSizes then sets up the
following S-function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog
parameters to three, as defined previously in the variable NPARAMS.

• If this method is compiled as a MEX file, ssGetSFcnParamsCount determines
how many parameters the user entered into the S-function dialog. If the
number of user-specified parameters matches the number returned by
ssGetNumSFcnParams, the method calls mdlCheckParameters to check the
validity of the user-entered data. Otherwise, the S-function errors out.

• If the parameter check passes, the S-function specifies the number
of continuous and discrete states using ssSetNumContStates and
ssSetNumDiscStates, respectively. This example has no discrete states and
sets the number of continuous states based on the number of coefficients in
the transfer function’s denominator.

• Next, ssSetNumInputPorts specifies that the S-function has a single input
port and sets its width to one plus twice the length of the denominator
using ssSetInputPortWidth. The method uses the value provided by the
third S-function dialog parameter as the input port’s sample time. This
parameter indicates the rate at which the transfer function is modified
during simulation. The S-function specifies that the input port has direct
feedthrough by passing a value of 1 to ssSetInputPortDirectFeedThrough.

• ssSetNumOutputPorts specifies that the S-function has a single output port.
The method uses ssSetOutputPortWidth to set the width of this output port,
ssSetOutputPortSampleTime to specify that the output port has a continuous
sample time, and ssSetOutputPortOffsetTime to set the offset time to zero.

• ssSetNumSampleTimes then initializes two sample times, which the
mdlInitializeSampleTimes function configures later.

• The method passes a value of four times the number of denominator
coefficients to ssSetNumRWork in order to set the length of the floating-point
work vector. ssSetNumIWork then sets the length of the integer work vector
to two. The RWork vectors store two banks of transfer function coefficients,
while the IWork vector indicates which bank in the RWork vector is
currently in use. The S-function sets the length of all other work vectors to
zero. You can omit these lines because zero is the default value for these
macros. However, for clarity, the S-function explicitly sets the number
of work vectors.

8-133

8 Implementing Block Features

• Lastly, ssSetOptions sets any applicable options. In this case,
SS_OPTION_EXCEPTION_FREE_CODE stipulates that the code is exception
free.

The mdlInitializeSizes function for this example is shown below.

/* Function: mdlInitializeSizes ===

* Abstract:

* Determine the S-function block's characteristics:

* number of inputs, outputs, states, etc.

*/

static void mdlInitializeSizes(SimStruct *S)

{

int_T nContStates;

int_T nCoeffs;

/* See sfuntmpl_doc.c for more details on the macros below. */

ssSetNumSFcnParams(S, NPARAMS); /* Number of expected parameters. */

#if defined(MATLAB_MEX_FILE)

if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

mdlCheckParameters(S);

if (ssGetErrorStatus(S) != NULL) {

return;

}

} else {

return; /* Parameter mismatch reported by the Simulink engine*/

}

#endif

/*

* Define the characteristics of the block:

*

* Number of continuous states: length of denominator - 1

* Inputs port width 2 * (NumContStates+1) + 1

* Output port width 1

* DirectFeedThrough: 0 (Although this should be computed.

* We'll assume coefficients entered

* are strictly proper).

8-134

C MEX S-Function Examples

* Number of sample times: 2 (continuous and discrete)

* Number of Real work elements: 4*NumCoeffs

* (Two banks for num and den coeff's:

* NumBank0Coeffs

* DenBank0Coeffs

* NumBank1Coeffs

* DenBank1Coeffs)

* Number of Integer work elements: 2 (indicator of active bank 0 or 1

* and flag to indicate when banks

* have been updated).

*

* The number of inputs arises from the following:

* o 1 input (u)

* o the numerator and denominator polynomials each have NumContStates+1

* coefficients

*/

nCoeffs = mxGetNumberOfElements(DEN(S));

nContStates = nCoeffs - 1;

ssSetNumContStates(S, nContStates);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 1 + (2*nCoeffs));

ssSetInputPortDirectFeedThrough(S, 0, 0);

ssSetInputPortSampleTime(S, 0, mxGetPr(TS(S))[0]);

ssSetInputPortOffsetTime(S, 0, 0);

if (!ssSetNumOutputPorts(S,1)) return;

ssSetOutputPortWidth(S, 0, 1);

ssSetOutputPortSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOutputPortOffsetTime(S, 0, 0);

ssSetNumSampleTimes(S, 2);

ssSetNumRWork(S, 4 * nCoeffs);

ssSetNumIWork(S, 2);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

8-135

8 Implementing Block Features

ssSetNumNonsampledZCs(S, 0);

/* Take care when specifying exception free code - see sfuntmpl_doc.c */

ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE));

} /* end mdlInitializeSizes */

The required S-function method mdlInitializeSampleTimes specifies the
S-function sample rates. The first call to ssSetSampleTime specifies that the
first sample rate is continuous and the subsequent call to ssSetOffsetTime
sets the offset to zero. The second call to this pair of macros sets the second
sample time to the value of the third S-function parameter with an offset of
zero. The call to ssSetModelReferenceSampleTimeDefaultInheritance tells
the solver to use the default rule to determine if referenced models containing
this S-function can inherit their sample times from the parent model.

/* Function: mdlInitializeSampleTimes ===

* Abstract:

* This function is used to specify the sample time(s) for the

* S-function. This S-function has two sample times. The

* first, a continuous sample time, is used for the input to the

* transfer function, u. The second, a discrete sample time

* provided by the user, defines the rate at which the transfer

* function coefficients are updated.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

/*

* the first sample time, continuous

*/

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

/*

* the second, discrete sample time, is user provided

*/

ssSetSampleTime(S, 1, mxGetPr(TS(S))[0]);

ssSetOffsetTime(S, 1, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

8-136

C MEX S-Function Examples

} /* end mdlInitializeSampleTimes */

The optional S-function method mdlInitializeConditions initializes the
continuous state vector and the initial numerator and denominator vectors.
The #define statement before this method is required for the Simulink
engine to call this function. The function initializes the continuous states
to zero. The numerator and denominator coefficients are initialized from
the first two S-function parameters, normalized by the first denominator
coefficient. The function sets the value stored in the IWork vector to zero, to
indicate that the first bank of numerator and denominator coefficients stored
in the RWork vector is currently in use.

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ==

* Abstract:

* Initalize the states, numerator and denominator coefficients.

*/

static void mdlInitializeConditions(SimStruct *S)

{

int_T i;

int_T nContStates = ssGetNumContStates(S);

real_T *x0 = ssGetContStates(S);

int_T nCoeffs = nContStates + 1;

real_T *numBank0 = ssGetRWork(S);

real_T *denBank0 = numBank0 + nCoeffs;

int_T *activeBank = ssGetIWork(S);

/*

* The continuous states are all initialized to zero.

*/

for (i = 0; i < nContStates; i++) {

x0[i] = 0.0;

numBank0[i] = 0.0;

denBank0[i] = 0.0;

}

numBank0[nContStates] = 0.0;

denBank0[nContStates] = 0.0;

/*

8-137

8 Implementing Block Features

* Set up the initial numerator and denominator.

*/

{

const real_T *numParam = mxGetPr(NUM(S));

int numParamLen = mxGetNumberOfElements(NUM(S));

const real_T *denParam = mxGetPr(DEN(S));

int denParamLen = mxGetNumberOfElements(DEN(S));

real_T den0 = denParam[0];

for (i = 0; i < denParamLen; i++) {

denBank0[i] = denParam[i] / den0;

}

for (i = 0; i < numParamLen; i++) {

numBank0[i] = numParam[i] / den0;

}

}

/*

* Normalize if this transfer function has direct feedthrough.

*/

for (i = 1; i < nCoeffs; i++) {

numBank0[i] -= denBank0[i]*numBank0[0];

}

/*

* Indicate bank0 is active (i.e. bank1 is oldest).

*/

*activeBank = 0;

} /* end mdlInitializeConditions */

The mdlOutputs function calculates the S-function output signals when the
S-function is simulating in a continuous task, i.e., ssIsContinuousTask is
true. If the simulation is also at a major time step, mdlOutputs checks if the
numerator and denominator coefficients need to be updated, as indicated by
a switch in the active bank stored in the IWork vector. At both major and
minor time steps, the S-function calculates the output using the numerator
coefficients stored in the active bank.

8-138

C MEX S-Function Examples

/* Function: mdlOutputs ===

* Abstract:

* The outputs for this block are computed by using a controllable state-

* space representation of the transfer function.

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

if (ssIsContinuousTask(S,tid)) {

int i;

real_T *num;

int nContStates = ssGetNumContStates(S);

real_T *x = ssGetContStates(S);

int_T nCoeffs = nContStates + 1;

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

real_T *y = ssGetOutputPortRealSignal(S,0);

int_T *activeBank = ssGetIWork(S);

/*

* Switch banks because we've updated them in mdlUpdate and we're no

* longer in a minor time step.

*/

if (ssIsMajorTimeStep(S)) {

int_T *banksUpdated = ssGetIWork(S) + 1;

if (*banksUpdated) {

*activeBank = !(*activeBank);

*banksUpdated = 0;

/*

* Need to tell the solvers that the derivatives are no

* longer valid.

*/

ssSetSolverNeedsReset(S);

}

}

num = ssGetRWork(S) + (*activeBank) * (2*nCoeffs);

/*

* The continuous system is evaluated using a controllable state space

* representation of the transfer function. This implies that the

* output of the system is equal to:

*

8-139

8 Implementing Block Features

* y(t) = Cx(t) + Du(t)

* = [b1 b2 ... bn]x(t) + b0u(t)

*

* where b0, b1, b2, ... are the coefficients of the numerator

* polynomial:

*

* B(s) = b0 s^n + b1 s^n-1 + b2 s^n-2 + ... + bn-1 s + bn

*/

*y = *num++ * (*uPtrs[0]);

for (i = 0; i < nContStates; i++) {

*y += *num++ * *x++;

}

}

} /* end mdlOutputs */

Although this example has no discrete states, the method still implements the
mdlUpdate function to update the transfer function coefficients at every major
time step. Because this method is optional, a #define statement precedes it.
The method uses ssGetInputPortRealSignalPtrs to obtain a pointer to the
input signal. The input signal’s values become the new transfer function
coefficients, which the S-function stores in the bank of the inactive RWork
vector. When the mdlOutputs function is later called at this major time step,
it updates the active bank to be this updated bank of coefficients.

#define MDL_UPDATE

/* Function: mdlUpdate ==

* Abstract:

* Every time through the simulation loop, update the

* transfer function coefficients. Here we update the oldest bank.

*/

static void mdlUpdate(SimStruct *S, int_T tid)

{

if (ssIsSampleHit(S, 1, tid)) {

int_T i;

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

int_T uIdx = 1;/*1st coeff is after signal input*/

int_T nContStates = ssGetNumContStates(S);

int_T nCoeffs = nContStates + 1;

int_T bankToUpdate = !ssGetIWork(S)[0];

8-140

C MEX S-Function Examples

real_T *num = ssGetRWork(S)+bankToUpdate*2*nCoeffs;

real_T *den = num + nCoeffs;

real_T den0;

int_T allZero;

/*

* Get the first denominator coefficient. It will be used

* for normalizing the numerator and denominator coefficients.

*

* If all inputs are zero, we probably could have unconnected

* inputs, so use the parameter as the first denominator coefficient.

*/

den0 = *uPtrs[uIdx+nCoeffs];

if (den0 == 0.0) {

den0 = mxGetPr(DEN(S))[0];

}

/*

* Grab the numerator.

*/

allZero = 1;

for (i = 0; (i < nCoeffs) && allZero; i++) {

allZero &= *uPtrs[uIdx+i] == 0.0;

}

if (allZero) { /* if numerator is all zero */

const real_T *numParam = mxGetPr(NUM(S));

int_T numParamLen = mxGetNumberOfElements(NUM(S));

/*

* Move the input to the denominator input and

* get the denominator from the input parameter.

*/

uIdx += nCoeffs;

num += nCoeffs - numParamLen;

for (i = 0; i < numParamLen; i++) {

*num++ = *numParam++ / den0;

}

} else {

8-141

8 Implementing Block Features

for (i = 0; i < nCoeffs; i++) {

*num++ = *uPtrs[uIdx++] / den0;

}

}

/*

* Grab the denominator.

*/

allZero = 1;

for (i = 0; (i < nCoeffs) && allZero; i++) {

allZero &= *uPtrs[uIdx+i] == 0.0;

}

if (allZero) { /* If denominator is all zero. */

const real_T *denParam = mxGetPr(DEN(S));

int_T denParamLen = mxGetNumberOfElements(DEN(S));

den0 = denParam[0];

for (i = 0; i < denParamLen; i++) {

*den++ = *denParam++ / den0;

}

} else {

for (i = 0; i < nCoeffs; i++) {

*den++ = *uPtrs[uIdx++] / den0;

}

}

/*

* Normalize if this transfer function has direct feedthrough.

*/

num = ssGetRWork(S) + bankToUpdate*2*nCoeffs;

den = num + nCoeffs;

for (i = 1; i < nCoeffs; i++) {

num[i] -= den[i]*num[0];

}

/*

* Indicate oldest bank has been updated.

*/

ssGetIWork(S)[1] = 1;

8-142

C MEX S-Function Examples

}

} /* end mdlUpdate */

The mdlDerivatives function calculates the continuous state derivatives.
The function uses the coefficients from the active bank to solve a controllable
state-space representation of the transfer function.

#define MDL_DERIVATIVES

/* Function: mdlDerivatives ===

* Abstract:

* The derivatives for this block are computed by using a controllable

* state-space representation of the transfer function.

*/

static void mdlDerivatives(SimStruct *S)

{

int_T i;

int_T nContStates = ssGetNumContStates(S);

real_T *x = ssGetContStates(S);

real_T *dx = ssGetdX(S);

int_T nCoeffs = nContStates + 1;

int_T activeBank = ssGetIWork(S)[0];

const real_T *num = ssGetRWork(S) + activeBank*(2*nCoeffs);

const real_T *den = num + nCoeffs;

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/*

* The continuous system is evaluated using a controllable state-space

* representation of the transfer function. This implies that the

* next continuous states are computed using:

*

* dx = Ax(t) + Bu(t)

* = [-a1 -a2 ... -an] [x1(t)] + [u(t)]

* [1 0 ... 0] [x2(t)] + [0]

* [0 1 ... 0] [x3(t)] + [0]

* [.] . + .

* [.] . + .

* [.] . + .

* [0 0 ... 1 0] [xn(t)] + [0]

*

8-143

8 Implementing Block Features

* where a1, a2, ... are the coefficients of the numerator polynomial:

*

* A(s) = s^n + a1 s^n-1 + a2 s^n-2 + ... + an-1 s + an

*/

dx[0] = -den[1] * x[0] + *uPtrs[0];

for (i = 1; i < nContStates; i++) {

dx[i] = x[i-1];

dx[0] -= den[i+1] * x[i];

}

} /* end mdlDerivatives */

The required mdlTerminate function performs any actions, such as freeing
memory, necessary at the end of the simulation. In this example, the function
is empty.

/* Function: mdlTerminate ===

* Abstract:

* Called when the simulation is terminated.

* For this block, there are no end of simulation tasks.

*/

static void mdlTerminate(SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

} /* end mdlTerminate */

The required S-function trailer includes the files necessary for simulation or
code generation, as follows.

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX file? */

#include "simulink.c" /* MEX file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

8-144

C MEX S-Function Examples

Note The mdlTerminate function uses the UNUSED_ARG macro to indicate that
an input argument the callback requires is not used. This optional macro is
defined in simstruc_types.h. If used, you must call this macro once for each
input argument that a callback does not use.

8-145

8 Implementing Block Features

8-146

9

S-Function Callback
Methods — Alphabetical
List

Every user-written S-function must implement a set of methods, called
callback methods or simply callbacks, that the Simulink engine invokes when
simulating a model that contains the S-function. Some callback methods
are optional. The engine invokes an optional callback only if the S-function
defines the callback. This topic describes the purpose and syntax of all
callback methods that an S-function can implement. In each case, the
documentation for a callback method indicates whether it is required or
optional. For a list of required callback methods, see “Callback Methods That
an S-Function Must Implement” on page 4-45.

CheckParameters

Purpose Check the validity of a MATLAB S-Function’s parameters

Required No

Language MATLAB

Syntax CheckParameters(s)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing a
Level-2 MATLAB S-Function block.

Description Verifies new parameter settings whenever parameters change or are
reevaluated during a simulation.

When a simulation is running, changes to S-function parameters can
occur at any time during the simulation loop, that is, either at the
start of a simulation step or during a simulation step. When the
change occurs during a simulation step, the Simulink engine calls this
routine twice to handle the parameter change. The first call during
the simulation step is used to verify that the parameters are correct.
After verifying the new parameters, the simulation continues using the
original parameter values until the next simulation step, at which time
the new parameter values are used. Redundant calls are needed to
maintain simulation consistency.

Note You cannot access the work, state, input, output, and other
vectors in this routine. Use this routine only to validate the
parameters. Additional processing of the parameters should be done in
ProcessParameters.

Example In a Level-2 MATLAB S-function, the setup method registers the
CheckParameters method as follows

9-2

CheckParameters

s.RegBlockMethod('CheckParameters', @CheckParam);

The local function CheckParam then verifies the S-function parameters.
In this example, the function checks that the second parameter, an
upper limit value, is greater than the first S-function parameter, a
lower limit value.

function CheckParam(s)

% Check that upper limit is greater than lower limit

lowerLim = s.DialogPrm(1).Data;

upperLim = s.DialogPrm(2).Data;

if upperLim <= lowerLim,

error('The upper limit must be greater than the lower limit.');

end

See Also ProcessParameters, Simulink.RunTimeBlock,
Simulink.MSFcnRunTimeBlock, mdlCheckParameters

9-3

Derivatives

Purpose Compute a MATLAB S-Function’s derivatives

Required No

Language MATLAB

Syntax Derivatives(s)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block

Description The Simulink engine invokes this optional method at each time step
to compute the derivatives of the S-function’s continuous states. This
method should store the derivatives in the S-function’s state derivatives
vector. In a Level-2 MATLAB S-function, use the run-time object’s
Derivatives method.

Each time the Derivatives routine is called, it must explicitly set the
values of all derivatives. The derivative vector does not maintain the
values from the last call to this routine. The memory allocated to the
derivative vector changes during execution.

Example For a Level-2 MATLAB S-function example, see msfcn_limintm.m.

See Also Simulink.RunTimeBlock, Simulink.MSFcnRunTimeBlock,
mdlDerivatives

9-4

Disable

Purpose Respond to disabling of an enabled system containing this MATLAB
S-Function block

Required No

Language MATLAB

Syntax Disable(s)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

Description The Simulink engine invokes this optional method if this block resides
in an enabled subsystem and the enabled subsystem changes from an
enabled to a disabled state at the current time step. Your S-function
can use this method to perform any actions required by the disabling of
the containing subsystem.

See Also Enable, Simulink.MSFcnRunTimeBlock, mdlDisable

9-5

Enable

Purpose Respond to enabling of an enabled system containing this MATLAB
S-Function block

Required No

Language MATLAB

Syntax Enable(s)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

Description The Simulink engine invokes this optional method if this block resides
in an enabled subsystem and the enabled subsystem changes from a
disabled to an enabled state at the current time step. Your S-function
can use this method to perform any actions required by the enabling of
the containing subsystem.

See Also Disable, Simulink.MSFcnRunTimeBlock, mdlEnable

9-6

GetSimState

Purpose Return the MATLAB S-function simulation state as a valid MATLAB
data structure, such as a matrix structure or a cell array.

Required No

Language MATLAB

Syntax GetSimState(s)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

Description The Simulink engine invokes this custom method to get the simulation
state (SimState) of the model containing S. A call to this method should
occur after Start and before Terminate to ensure that all of the
S-function data structures (e.g., states, DWork vectors, and outputs)
are available.

See Also SetSimState, Simulink.MSFcnRunTimeBlock, mdlGetSimState

9-7

InitializeConditions

Purpose Initialize the state vectors of this MATLAB S-function

Required No

Language MATLAB

Syntax InitializeConditions(s)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

Description The Simulink engine invokes this optional method at the beginning of
a simulation. It should initialize the continuous and discrete states,
if any, of this S-Function block. In a Level-2 MATLAB S-function,
use the ContStates or Dwork run-time object methods to access the
continuous and discrete states. This method can also perform any other
initialization activities that this S-function requires.

Note If you have Simulink Coder, and you need to ensure that the
initialization code in the InitializeConditions function is run
only once, then move this initialization code into the Start method.
MathWorks recommends this code change as a best practice.

If this S-function resides in an enabled subsystem configured to reset
states, the Simulink engine also calls this method when the enabled
subsystem restarts execution.

The Simulink engine calls InitializeConditions prior to calculating
the S-function’s input signals. Therefore, since the input signal values
are not yet available, InitializeConditions should not use the input
signal values to set initial conditions. If your S-function needs to
initialize internal values using the block’s input signals, perform the
initialization in Outputs.

9-8

InitializeConditions

For example, in a C MEX S-function, initializes an IWork vector with
one element in the mdlInitializeSizes method.

ssSetNumIWork(S, 1);

The IWork vector holds a flag indicating if initial values have been
specified. Initialize the flag’s value in the mdlInitializeCondition
method.

static void mdlInitializeConditions(SimStruct *S)

{

/* The mdlInitializeConditions method is called when the simulation

start and every time an enabled subsystem is re-enabled.

Reset the IWork flag to 1 when values need to be reinitialized.*/

ssSetIWorkValue(S, 0, 1);

}

Check the value of the IWork vector flag in the mdlOutputs method,
to determine if initial values need to be set. Since the engine has
calculated input values at this point in the simulation, the mdlOutputs
method can use them to initialize internal values.

static void mdlOutputs(SimStruct *S, int_T tid)

{

// Initialize values if the IWork vector flag is true. //

if (ssGetIWorkValue(S, 0) == 1) {

// Enter initialization code here //

}

// Remainder of mdlOutputs function //

}

For a Level-2 MATLAB S-function, use a DWork vector instead of an
IWork vector in the previous example.

9-9

InitializeConditions

Example This example initializes both a continuous and discrete state to 1.0.
Level-2 MATLAB S-functions store discrete states in their DWork
vectors.

function InitializeConditions(s)

s.ContStates.Data(1) = 1;
s.Dwork(1).Data = 1;

% endfunction

See Also Start, Outputs, Simulink.RunTimeBlock,
Simulink.MSFcnRunTimeBlock, mdlInitializeConditions

9-10

mdlCheckParameters

Purpose Check the validity of a C MEX S-function’s parameters

Required No

Languages C, C++

Syntax #define MDL_CHECK_PARAMETERS
void mdlCheckParameters(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description Verifies new parameter settings whenever parameters change or
are reevaluated during a simulation. If you have Simulink Coder,
for C MEX S-functions, this method is only valid for simulation, and
must be enclosed in a #if defined(MATLAB_MEX_FILE) statement to
be compatible with code generation targets that support noninlined
S-functions.

When a simulation is running, changes to S-function parameters can
occur at any time during the simulation loop, that is, either at the
start of a simulation step or during a simulation step. When the
change occurs during a simulation step, the Simulink engine calls this
routine twice to handle the parameter change. The first call during
the simulation step is used to verify that the parameters are correct.
After verifying the new parameters, the simulation continues using the
original parameter values until the next simulation step, at which time
the new parameter values are used. Redundant calls are needed to
maintain simulation consistency.

Note You cannot access the work, state, input, output, and other
vectors in this routine. Use this routine only to validate the
parameters. Additional processing of the parameters should be done in
mdlProcessParameters.

9-11

mdlCheckParameters

Example This example checks the first S-function parameter to verify that it is
a real nonnegative scalar.

Note Since mdlCheckParameters is an optional method, a #define
MDL_CHECK_PARAMETERS statement precedes the function. Also,
since the Simulink Coder product does not support code generation
for mdlCheckParameters, the function is wrapped in a #if
defined(MATLAB_MEX_FILE) statement.

#define PARAM1(S) ssGetSFcnParam(S,0)

#define MDL_CHECK_PARAMETERS /* Change to #undef to remove function */

#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)

static void mdlCheckParameters(SimStruct *S)

{

if (mxGetNumberOfElements(PARAM1(S)) != 1) {

ssSetErrorStatus(S,"Parameter to S-function must be a scalar");

return;

} else if (mxGetPr(PARAM1(S))[0] < 0) {

ssSetErrorStatus(S, "Parameter to S-function must be nonnegative");

return;

}

}

#endif /* MDL_CHECK_PARAMETERS */

In addition to the preceding routine, you must add a call to this method
from mdlInitializeSizes to check parameters during initialization,
because mdlCheckParameters is only called while the simulation is
running. To do this, after setting the number of parameters you expect
in your S-function by using ssSetNumSFcnParams, use this code in
mdlInitializeSizes:

9-12

mdlCheckParameters

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 1); /* Number of expected parameters */

#if defined(MATLAB_MEX_FILE)

if(ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S) {

mdlCheckParameters(S);

if(ssGetErrorStatus(S) != NULL) return;

} else {

return; /* The Simulink engine reports a mismatch error. */

}

#endif

...

}

Note The macro ssGetSFcnParamsCount returns the actual number of
parameters entered in the dialog box.

See sfun_errhdl.c for an example.

See Also mdlProcessParameters, ssGetSFcnParamsCount, CheckParameters

9-13

mdlDerivatives

Purpose Compute the C MEX S-function’s derivatives

Required No

Languages C, C++

Syntax #define MDL_DERIVATIVES
void mdlDerivatives(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description The Simulink engine invokes this optional method at each time step
to compute the derivatives of the S-function’s continuous states. This
method should store the derivatives in the S-function’s state derivatives
vector. In a C MEX S-function, use ssGetdX to get a pointer to the
derivatives vector.

Each time the mdlDerivatives routine is called, it must explicitly set
the values of all derivatives. The derivative vector does not maintain
the values from the last call to this routine. The memory allocated to
the derivative vector changes during execution.

9-14

mdlDerivatives

Note If you have Simulink Coder, when generating code for a
noninlined C MEX S-function that contains this method, make sure
the method is not wrapped in a #if defined(MATLAB_MEX_FILE)
statement. For example:

#define MDL_DERIVATIVES
#if defined(MDL_DERIVATIVES) && defined(MATLAB_MEX_FILE)
static void mdlDerivatives(SimStruct *S)
{

/* Add mdlDerivatives code here *
}
#endif

The define statement makes the mdlDerivatives method available
only to a MATLAB MEX file. If the S-function is not inlined, the
Simulink Coder product cannot use this method, resulting in link or
run-time errors.

Example For a C MEX S-function example, see csfunc.c.

See Also ssGetdx, Derivatives

9-15

mdlDisable

Purpose Respond to disabling of an enabled system containing this block

Required No

Languages C, C++

Syntax #define MDL_DISABLE
void mdlDisable(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description The Simulink engine invokes this optional method if this block resides
in an enabled subsystem and the enabled subsystem changes from an
enabled to a disabled state at the current time step. Your S-function
can use this method to perform any actions required by the disabling of
the containing subsystem.

See Also mdlEnable, Disable

9-16

mdlEnable

Purpose Respond to enabling of a enabled system containing this block

Required No

Languages C, C++

Syntax #define MDL_ENABLE
void mdlEnable(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description The Simulink engine invokes this optional method if this block resides
in an enabled subsystem and the enabled subsystem changes from a
disabled to an enabled state at the current time step. Your S-function
can use this method to perform any actions required by the enabling of
the containing subsystem.

See Also mdlDisable, Enable

9-17

mdlGetSimState

Purpose Return the C MEX S-function simulation state as a valid MATLAB data
structure, such as a matrix structure or a cell array.

Required No

Languages C, C++

Syntax #define MDL_SIM_STATE
mxArray* mdlGetSimState(SimStruct* S)

Arguments S
SimStruct representing an S-Function block.

Description The Simulink engine invokes this custom method to get the simulation
state (SimState) of the model containing S. A call to this method should
occur after mdlStart and before mdlTerminate to ensure that all of the
S-function data structures (e.g., states, DWork vectors, and outputs)
are available.

Example % Function: mdlGetSimState
% Abstract:
% Package the RunTimeData structure as a MATLAB structure
% and return it.
%
static mxArray* mdlGetSimState(SimStruct* S)
{

int n = ssGetInputPortWidth(S, 0);
RunTimeData_T* rtd =

(RunTimeData_T*)ssGetPWorkValue(S, 0);

/* Create a MATLAB structure to hold the run-time data */
mxArray* simSnap =

mxCreateStructMatrix(1, 1, nFields, fieldNames);
return simSnap;
}

9-18

mdlGetSimState

See Also mdlSetSimState, GetSimState

9-19

mdlGetTimeOfNextVarHit

Purpose Specify time of the next sample time hit

Required No

Languages C, C++

Syntax #define MDL_GET_TIME_OF_NEXT_VAR_HIT
void mdlGetTimeOfNextVarHit(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description The Simulink engine invokes this optional method at every major
integration step to get the time of the next sample time hit. This method
should set the time of next hit, using ssSetTNext. The time of the next
hit must be greater than the current simulation time as returned by
ssGetT. The S-function must implement this method if it operates at a
discrete, variable-step sample time.

For Level-2 MATLAB S-functions, use a sample time of -2 to
specify a variable sample time. The S-function’s output method
should then update the NextTimeHit property of the instance of the
Simulink.MSFcnRunTimeBlock class representing the S-Function block
to set the time of the next sample time hit. See /msfcn_vs.m for an
example.

For Level-1 MATLAB S-functions, a flag of 4 is passed to the S-function
when the next sample time hit needs to be calculated.

Note The time of the next hit can be a function of the input signals.

Example static void mdlGetTimeOfNextVarHit(SimStruct *S)
{

time_T offset = getOffset();

9-20

mdlGetTimeOfNextVarHit

time_T timeOfNextHit = ssGetT(S) + offset;
ssSetTNext(S, timeOfNextHit);

}

See Also mdlInitializeSampleTimes, ssGetT, ssSetTNext

9-21

mdlInitializeConditions

Purpose Initialize the state vectors of this C MEX S-function

Required No

Languages C, C++

Syntax #define MDL_INITIALIZE_CONDITIONS
void mdlInitializeConditions(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description The Simulink engine invokes this optional method at the beginning
of a simulation. It should initialize the continuous and discrete
states, if any, of this S-Function block. In a C MEX S-function, use
ssGetContStates and/or ssGetDiscStates to access the states. This
method can also perform any other initialization activities that this
S-function requires.

Note If you have Simulink Coder and you need to ensure that the
initialization code in the mdlInitializeConditions function is run
only once, then move this initialization code into the mdlStart method.
MathWorks recommends this code change as a best practice.

If this S-function resides in an enabled subsystem configured to
reset states, the Simulink engine also calls this method when the
enabled subsystem restarts execution. C MEX S-functions can use the
ssIsFirstInitCond macro to determine whether the time at which
mdlInitializeCondition is called is equal to the simulation start time.

9-22

mdlInitializeConditions

Note If you have Simulink Coder, when generating code for a
noninlined C MEX S-function that contains this method, make sure
the method is not wrapped in a #if defined(MATLAB_MEX_FILE)
statement. For example:

#define MDL_INITIALIZE_CONDITIONS

#if defined(MDL_INITIALIZE_CONDITIONS) && defined(MATLAB_MEX_FILE)

static void mdlInitializeConditions(SimStruct *S)

{

/* Add mdlInitializeConditions code here *

}

#endif

The define statement makes the mdlInitializeConditions method
available only to a MATLAB MEX file. If the S-function is not inlined,
the Simulink Coder product cannot use this method, resulting in link
or run-time errors.

The Simulink engine calls mdlInitializeConditions prior to
calculating the S-function’s input signals. Therefore, since the input
signal values are not yet available, mdlInitializeConditions should
not use the input signal values to set initial conditions. If your
S-function needs to initialize internal values using the block’s input
signals, perform the initialization in mdlOutputs.

For example, in a C MEX S-function, initializes an IWork vector with
one element in the mdlInitializeSizes method.

ssSetNumIWork(S, 1);

The IWork vector holds a flag indicating if initial values have been
specified. Initialize the flag’s value in the mdlInitializeCondition
method.

static void mdlInitializeConditions(SimStruct *S)

{

9-23

mdlInitializeConditions

/* The mdlInitializeConditions method is called when the simulation

start and every time an enabled subsystem is re-enabled.

Reset the IWork flag to 1 when values need to be reinitialized.*/

ssSetIWorkValue(S, 0, 1);

}

Check the value of the IWork vector flag in the mdlOutputs method,
to determine if initial values need to be set. Since the engine has
calculated input values at this point in the simulation, the mdlOutputs
method can use them to initialize internal values.

static void mdlOutputs(SimStruct *S, int_T tid)

{

// Initialize values if the IWork vector flag is true. //

if (ssGetIWorkValue(S, 0) == 1) {

// Enter initialization code here //

}

// Remainder of mdlOutputs function //

}

For a Level-2 MATLAB S-function, use a DWork vector instead of an
IWork vector in the previous example.

Example This example initializes both a continuous and discrete state to 1.0.

#define MDL_INITIALIZE_CONDITIONS /*Change to #undef to remove */

/*function*/

#if defined(MDL_INITIALIZE_CONDITIONS)

static void mdlInitializeConditions(SimStruct *S)

{

int i;

real_T *xcont = ssGetContStates(S);

int_T nCStates = ssGetNumContStates(S);

real_T *xdisc = ssGetRealDiscStates(S);

9-24

mdlInitializeConditions

int_T nDStates = ssGetNumDiscStates(S);

for (i = 0; i < nCStates; i++) {

*xcont++ = 1.0;

}

for (i = 0; i < nDStates; i++) {

*xdisc++ = 1.0;

}

}

#endif /* MDL_INITIALIZE_CONDITIONS */

For another example that initializes only the continuous states, see
resetint.c.

See Also mdlStart, mdlOutputs, ssIsFirstInitCond, ssGetContStates,
ssGetDiscStates, ssGetTStart, ssGetT, InitializeConditions

9-25

mdlInitializeSampleTimes

Purpose Specify the sample rates at which this C MEX S-function operates

Required Yes

Languages C, C++

Syntax #define MDL_INITIALIZE_SAMPLE_TIMES
void mdlInitializeSampleTimes(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description This method should specify the sample time and offset time for each
sample rate at which this S-function operates via the following paired
macros

ssSetSampleTime(S, sampleTimeIndex, sample_time)
ssSetOffsetTime(S, offsetTimeIndex, offset_time)

where sampleTimeIndex runs from 0 to one less than the
number of sample times specified in mdlInitializeSizes via
ssSetNumSampleTimes.

If the S-function operates at one or more sample rates, this method
can specify any of the following sample time and offset values for a
given sample time:

• [CONTINUOUS_SAMPLE_TIME, 0.0]

• [CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

• [discrete_sample_period, offset]

• [VARIABLE_SAMPLE_TIME, 0.0]

The uppercase values are macros defined in simstruc_types.h.

If the S-function operates at one rate, this method can alternatively set
the sample time to one of the following sample/offset time pairs.

9-26

mdlInitializeSampleTimes

• [INHERITED_SAMPLE_TIME, 0.0]

• [INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

If the number of sample times is 0, the Simulink engine assumes that
the S-function inherits its sample time from the block to which it is
connected, i.e., that the sample time is

[INHERITED_SAMPLE_TIME, 0.0]

This method can therefore return without doing anything.

Use the following guidelines when specifying sample times.

• A continuous function that changes during minor integration steps
should set the sample time to

[CONTINUOUS_SAMPLE_TIME, 0.0]

• A continuous function that does not change during minor integration
steps should set the sample time to

[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

• A discrete function that changes at a specified rate should set the
sample time to

[discrete_sample_period, offset]

where

discrete_sample_period > 0.0

and

0.0 <= offset < discrete_sample_period

• A discrete function that changes at a variable rate should set the
sample time to

9-27

mdlInitializeSampleTimes

[VARIABLE_SAMPLE_TIME, 0.0]

The Simulink engine invokes the mdlGetTimeOfNextVarHit function
to get the time of the next sample hit for the variable-step discrete
task.

Note that VARIABLE_SAMPLE_TIME requires a variable-step solver.

• To operate correctly in a triggered subsystem or a periodic system, a
discrete S-function should

- Specify a single sample time set to

[INHERITED_SAMPLE_TIME, 0.0]

- Use ssSetOptions to set the
SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME simulation option
in mdlInitializeSizes

- Verify that it was assigned a discrete or triggered sample time in
mdlSetWorkWidths:

if (ssGetSampleTime(S, 0) == CONTINUOUS_SAMPLE_TIME) {
ssSetErrorStatus(S,

"This block cannot be assigned a continuous sample
time");

}

After propagating sample times throughout the block diagram, the
engine assigns the sample time

[INHERITED_SAMPLE_TIME, INHERITED_SAMPLE_TIME]

to discrete blocks residing in triggered subsystems.

If this function has no intrinsic sample time, it should set its sample
time to inherited according to the following guidelines:

• A function that changes as its input changes, even during minor
integration steps, should set its sample time to

9-28

mdlInitializeSampleTimes

[INHERITED_SAMPLE_TIME, 0.0]

A function that changes as its input changes, but doesn’t change
during minor integration steps (i.e., is held during minor steps)
should set its sample time to

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

The S-function should use the ssIsSampleHit or ssIsContinuousTask
macros to check for a sample hit during execution (in mdlOutputs or
mdlUpdate). For example, if the block’s first sample time is continuous,
the function can use the following code fragment to check for a sample
hit.

if (ssIsContinuousTask(S,tid)) {
}

Note The function receives incorrect results if it uses
ssIsSampleHit(S,0,tid).

If the function wants to determine whether the third (discrete) task has
a hit, it can use the following code fragment.

if (ssIsSampleHit(S,2,tid) {
}

9-29

mdlInitializeSampleTimes

Note If you have Simulink Coder, when generating code for a
noninlined S-function that contains this method, make sure the method
is not wrapped in a #if defined(MATLAB_MEX_FILE) statement. For
example:

#if defined(MATLAB_MEX_FILE)
static void mdlInitializeSampleTimes(SimStruct *S)
{

/* Add mdlInitializeSampleTimes code here *
}
#endif

The define statement makes the mdlInitializeSampleTimes method
available only to a MATLAB MEX file. If the S-function is not inlined,
the Simulink Coder product cannot use this method, resulting in link
or run-time errors.

See Also mdlSetInputPortSampleTime, mdlSetOutputPortSampleTime

9-30

mdlInitializeSizes

Purpose Specify the number of inputs, outputs, states, parameters, and other
characteristics of the C MEX S-function

Required Yes

Languages C, C++

Syntax #define MDL_INITIAL_SIZES
void mdlInitializeSizes(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description This is the first S-function callback methods that the Simulink engine
calls. This method performs the following tasks:

• Specify the number of parameters that this S-function supports,
using ssSetNumSFcnParams.

Use ssSetSFcnParamTunable(S,paramIdx, 0) when a parameter
cannot change during simulation, where paramIdx starts at 0. When
a parameter has been specified as not tunable, the engine issues
an error during simulation (or when in external mode when using
the Simulink Coder product) if an attempt is made to change the
parameter.

• Specify the number of states that this function has, using
ssSetNumContStates and ssSetNumDiscStates.

• Configure the block’s input ports, including:

- Specify the number of input ports that this S-function has, using
ssSetNumInputPorts.

- Specify the dimensions of the input ports.

See ssSetInputPortDimensionInfo for more information.

9-31

mdlInitializeSizes

- For each input port, specify whether it has direct feedthrough,
using ssSetInputPortDirectFeedThrough.

A port has direct feedthrough if the input is used in either the
mdlOutputs or mdlGetTimeOfNextVarHit function. The direct
feedthrough flag for each input port can be set to either 1=yes
or 0=no. It should be set to 1 if the input, u, is used in the
mdlOutputs or mdlGetTimeOfNextVarHit routine. Setting the
direct feedthrough flag to 0 tells the Simulink engine that u is not
used in either of these S-function routines. Violating this leads
to unpredictable results.

• Configure the block’s output ports, including:

- Specify the number of output ports that the block has, using
ssSetNumOutputPorts.

- Specify the dimensions of the output ports.

See mdlSetOutputPortDimensionInfo for more information.

If your S-function outputs are discrete (for example, the
outputs only take specific values such as 0, 1, and 2), specify
SS_OPTION_DISCRETE_VALUED_OUTPUT.

• Set the number of sample times (i.e., sample rates) at which the
block operates.

There are two ways of specifying sample times:

- Port-based sample times

- Block-based sample times

See “Sample Times” on page 8-32 for a complete discussion of sample
time issues.

For multirate S-functions, the suggested approach to setting sample
times is via the port-based sample times method. When you create a
multirate S-function, you must take care to verify that, when slower
tasks are preempted, your S-function correctly manages data so as to
avoid race conditions. When port-based sample times are specified,
the block cannot inherit a constant sample time at any port.

9-32

mdlInitializeSizes

• Set the size of the block’s work vectors, using ssSetNumRWork,
ssSetNumIWork, ssSetNumPWork, ssSetNumModes,
ssSetNumNonsampledZCs.

• Set the simulation options that this block implements, using
ssSetOptions.

All options have the form SS_OPTION_<name>. See “Information and
Options” for information on each option. Use a bitwise OR operator to
set multiple options, as in

ssSetOptions(S, (SS_OPTION_name1 | SS_OPTION_name2))

Note If you have Simulink Coder, when generating code for a
noninlined S-function that contains this method, make sure the method
is not wrapped in a #if defined(MATLAB_MEX_FILE) statement. For
example:

#if defined(MATLAB_MEX_FILE)
static void mdlInitializeSizes(SimStruct *S)
{

/* Add mdlInitializeSizes code here *
}
#endif

The define statement makes the mdlInitializeSizes method
available only to a MATLAB MEX file. If the S-function is not inlined,
the Simulink Coder product cannot use this method, resulting in link
or run-time errors.

Dynamically Sized Block Features

You can set the parameters NumContStates, NumDiscStates,
NumInputs, NumOutputs, NumRWork, NumIWork, NumPWork, NumModes, and
NumNonsampledZCs to a fixed nonnegative integer or tell the Simulink
engine to size them dynamically:

9-33

mdlInitializeSizes

• DYNAMICALLY_SIZED -- Sets lengths of states, work vectors, and so
on to values inherited from the driving block. It sets widths to the
actual input widths, according to the scalar expansion rules unless
you use mdlSetWorkWidths to set the widths.

• 0 or positive number -- Sets lengths (or widths) to the specified
values. The default is 0.

Initialization for MATLAB S-Functions

The Level-2 MATLAB S-function setup method performs nearly the
same tasks as the C MEX S-function mdlInitializeSizes method.

Example static void mdlInitializeSizes(SimStruct *S)

{

int_T nInputPorts = 1; /* number of input ports */

int_T nOutputPorts = 1; /* number of output ports */

int_T needsInput = 1; /* direct feedthrough */

int_T inputPortIdx = 0;

int_T outputPortIdx = 0;

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

/*

* If the number of expected input parameters is not

* equal to the number of parameters entered in the

* dialog box, return. The Simulink engine generates an

* error indicating that there is aparameter mismatch.

*/

return;

}else {

mdlCheckParameters(S);

if (ssGetErrorStatus(s) != NULL)

return;

}

9-34

mdlInitializeSizes

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);

/*

* Configure the input ports. First set the number of input

* ports.

*/

if (!ssSetNumInputPorts(S, nInputPorts)) return;

/*

* Set input port dimensions for each input port index

* starting at 0.

*/

if(!ssSetInputPortDimensionInfo(S, inputPortIdx,

DYNAMIC_DIMENSION)) return;

/*

* Set direct feedthrough flag (1=yes, 0=no).

*/

ssSetInputPortDirectFeedThrough(S, inputPortIdx, needsInput);

/*

* Configure the output ports. First set the number of

* output ports.

*/

if (!ssSetNumOutputPorts(S, nOutputPorts)) return;

/*

* Set output port dimensions for each output port index

* starting at 0.

*/

if(!ssSetOutputPortDimensionInfo(S,outputPortIdx,

DYNAMIC_DIMENSION)) return;

/*

* Set the number of sample times. */

9-35

mdlInitializeSizes

ssSetNumSampleTimes(S, 1);

/*

* Set size of the work vectors.

*/

ssSetNumRWork(S, 0); /* real vector */

ssSetNumIWork(S, 0); /* integer vector */

ssSetNumPWork(S, 0); /* pointer vector */

ssSetNumModes(S, 0); /* mode vector */

ssSetNumNonsampledZCs(S, 0); /* zero crossings */

ssSetOptions(S, 0);

} /* end mdlInitializeSizes */

See Also setup, mdlInitializeSampleTimes

9-36

mdlOutputs

Purpose Compute the signals that this block emits

Required Yes

Languages C, C++

Syntax #define MDL_OUTPUTS
void mdlOutputs(SimStruct *S, int_T tid)

Arguments S
SimStruct representing an S-Function block.

tid
Task ID.

Description The Simulink engine invokes this required method at each simulation
time step. The method should compute the S-function’s outputs at the
current time step and store the results in the S-function’s output signal
arrays.

The tid (task ID) argument specifies the task running when the
mdlOutputs routine is invoked. You can use this argument in the
mdlOutports routine of a multirate S-Function block to encapsulate
task-specific blocks of code (see “Multirate S-Function Blocks” on page
8-44).

Use the UNUSED_ARG macro if the S-function does not contain
task-specific blocks of code to indicate that the tid input argument is
required but not used in the body of the callback. To do this, insert
the line

UNUSED_ARG(tid)

after the declarations in mdlOutputs.

9-37

mdlOutputs

Note If you have Simulink Coder, when generating code for a
noninlined S-function that contains this method, make sure the method
is not wrapped in a #if defined(MATLAB_MEX_FILE) statement. For
example:

#if defined(MATLAB_MEX_FILE)
static void mdlOutputs(SimStruct *S)
{

/* Add mdlOutputs code here *
}
#endif

The define statement makes the mdlOutputs method available only
to a MATLAB MEX file. If the S-function is not inlined, the Simulink
Coder product cannot use this method, resulting in link or run-time
errors.

Example For an example of an mdlOutputs routine that works with multiple
input and output ports, see sfun_multiport.c.

See Also ssGetOutputPortComplexSignal, ssGetOutputPortRealSignal,
ssGetOutputPortSignal, Outputs

9-38

mdlProcessParameters

Purpose Process the C MEX S-function’s parameters

Required No

Languages C, C++

Syntax
#define MDL_PROCESS_PARAMETERS
void mdlProcessParameters(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description This is an optional routine that the Simulink engine calls after
mdlCheckParameters changes and verifies parameters. The
processing is done at the top of the simulation loop when it is safe
to process the changed parameters. This function is only valid for
simulation. C MEX S-functions must enclose the method in a #if
defined(MATLAB_MEX_FILE) statement.

The purpose of this routine is to process newly changed parameters. An
example is to cache parameter changes in work vectors. The engine
does not call this routine when it is used with the Simulink Coder
product. Therefore, if you use this routine in an S-function designed for
use with the Simulink Coder product, you must write your S-function
so that it doesn’t rely on this routine. To do this, you must inline your
S-function by using the Target Language Compiler. For information on
inlining S-functions, see “Inlining S-Functions”.

Example This example processes a string parameter that mdlCheckParameters
has verified to be of the form '+++' (where there could be any number
of '+' or '-' characters).

#define MDL_PROCESS_PARAMETERS /* Change to #undef to remove function */

#if defined(MDL_PROCESS_PARAMETERS) && defined(MATLAB_MEX_FILE)

static void mdlProcessParameters(SimStruct *S)

9-39

mdlProcessParameters

{

int_T i;

char_T *plusMinusStr;

int_T nInputPorts = ssGetNumInputPorts(S);

int_T *iwork = ssGetIWork(S);

if ((plusMinusStr=(char_T*)malloc(nInputPorts+1)) == NULL) {

ssSetErrorStatus(S,"Memory allocation error in mdlStart");

return;

}

if (mxGetString(SIGNS_PARAM(S),plusMinusStr,nInputPorts+1) != 0) {

free(plusMinusStr);

ssSetErrorStatus(S,"mxGetString error in mdlStart");

return;

}

for (i = 0; i < nInputPorts; i++) {

iwork[i] = plusMinusStr[i] == '+'? 1: -1;

}

free(plusMinusStr);

}

#endif /* MDL_PROCESS_PARAMETERS */

mdlProcessParameters is called from mdlStart to load the signs string
prior to the start of the simulation loop.

#define MDL_START
#if defined(MDL_START)
static void mdlStart(SimStruct *S)
{

mdlProcessParameters(S);
}
#endif /* MDL_START */

See Also mdlCheckParameters, ProcessParameters

9-40

mdlProjection

Purpose Perturb the solver’s solution of a system’s states to better satisfy
time-invariant solution relationships

Required No

Languages C, C++

Syntax #define MDL_PROJECTION
void mdlProjection(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description This method is intended for use with S-functions that model dynamic
systems whose states satisfy time-invariant relationships, such as those
resulting from mass or energy conservation or other physical laws. The
Simulink engine invokes this method at each time step after the model’s
solver has computed the S-function’s states for that time step. Typically,
slight errors in the numerical solution of the states cause the solutions
to fail to satisfy solution invariants exactly. Your mdlProjection
method can compensate for the errors by perturbing the states so that
they more closely approximate solution invariants at the current time
step. As a result, the numerical solution adheres more closely to the
ideal solution as the simulation progresses, producing a more accurate
overall simulation of the system modeled by your S-function.

Your mdlProjection method’s perturbations of system states must fall
within the solution error tolerances specified by the model in which the
S-function is embedded. Otherwise, the perturbations may invalidate
the solver’s solution. It is up to your mdlProjection method to ensure
that the perturbations meet the error tolerances specified by the model.
See “Perturbing a System’s States Using a Solution Invariant” on page
9-42 for a simple method for perturbing a system’s states. The following
articles describe more sophisticated perturbation methods that your
mdlProjection method can use.

9-41

mdlProjection

• C.W. Gear, “Maintaining Solution Invariants in the Numerical
Solution of ODEs,” Journal on Scientific and Statistical Computing,
Vol. 7, No. 3, July 1986.

• L.F. Shampine, “Conservation Laws and the Numerical Solution of
ODEs I,” Computers and Mathematics with Applications, Vol. 12B,
1986, pp. 1287–1296.

• L.F. Shampine, “Conservation Laws and the Numerical Solution of
ODEs II,” Computers and Mathematics with Applications, Vol. 38,
1999, pp. 61–72.

Example Perturbing a System’s States Using a Solution Invariant

Here is a simple, Taylor-series-based approach to perturbing a system’s
states. Suppose your S-function models a dynamic system having

a solution invariant, g X t(,) , i.e., g is a continuous, differentiable
function of the system states, X , and time, t , whose value is constant
with time. Then

X X J J J Rn n n
T

n n
T

n≅ + −* () 1

where

• Xn is the system’s ideal state vector at the solver’s current time step

• Xn
* is the approximate state vector computed by the solver at the

current time step

• Jn is the Jacobian of the invariant function evaluated at the point in
state space specified by the approximate state vector at the current
time step:

J
g
X

X tn n n= ∂
∂

(,)*

• tn is the time at the current time step

9-42

mdlProjection

• Rn is the residual (difference) between the invariant function

evaluated at Xn and Xn
* at the current time step:

R g X t g X tn n n n n= −(,) (,)*

Note The value of g X tn n(,) is the same at each time step and is
known by definition.

Given a continuous, differentiable invariant function for the system
that your S-function models, this formula allows your S-function’s
mdlProjection method to compute a perturbation

J J J Rn
T

n n
T

n()−1

of the solver’s numerical solution, Xn
* , that more closely matches the

ideal solution, Xn , keeping the S-function’s solution from drifting from
the ideal solution as the simulation progresses.

MATLAB Example

This example illustrates how the perturbation method outlined in the
previous section can keep a model’s numerical solution from drifting
from the ideal solution as a simulation progresses. Consider the
following model,mdlProjectionEx1:

The PredPrey block references an S-function, predprey_noproj.m, that
uses the Lotka-Volterra equations

9-43

mdlProjection

x ax y
y cy x

= −
= − −

()
()
1
1

to model predator-prey population dynamics, where x t() is the

population density of the predators and y t() is the population density
of prey. The ideal solution to the predator-prey ODEs satisfies the
time-invariant function

x e y e dc cx a ay− − =

where a , c , and d are constants. The S-function assumes a = 1, c =
2, and d = 121.85.

The Invariant Residual block in this model computes the residual
between the invariant function evaluated along the system’s ideal
trajectory through state space and its simulated trajectory:

R d x e y en n
c cx

n
a ayn n= − − −

where xn and yn are the values computed by the model’s solver for the
predator and prey population densities, respectively, at the current
time step. Ideally, the residual should be zero throughout simulation of
the model, but simulating the model reveals that the residual actually
strays considerably from zero:

9-44

mdlProjection

Now consider the following model, mdlProjectionEx2:

9-45

mdlProjection

This model is the same as the previous model, except that its
S-function, predprey.m, includes a mdlProjection method that uses
the perturbation approach outlined in “Perturbing a System’s States
Using a Solution Invariant” on page 9-42 to compensate for numerical
drift. As a result, the numerical solution more closely tracks the ideal
solution as the simulation progresses as demonstrated by the residual
signal, which remains near or at zero throughout the simulation:

9-46

mdlProjection

See Also Projection

9-47

mdlRTW

Purpose Generate code generation data for a C MEX S-function

Required No

Languages C, C++

Syntax #define MDL_RTW
void mdlRTW(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description This function is called when the Simulink Coder product is generating
the model.rtw file. In C MEX S-functions, you can call the following
functions that add fields to the model.rtw file:

• ssWriteRTWParameters

• ssWriteRTWParamSettings

• ssWriteRTWWorkVect

• ssWriteRTWStr

• ssWriteRTWStrParam

• ssWriteRTWScalarParam

• ssWriteRTWStrVectParam

• ssWriteRTWVectParam

• ssWriteRTW2dMatParam

• ssWriteRTWMxVectParam

• ssWriteRTWMx2dMatParam

In C MEX S-functions, this function must be enclosed in a #if
defined(MATLAB_MEX_FILE) statement.

9-48

mdlRTW

Example See the S-function sfun_multiport.c in the Simulink model
sldemo_msfcn_lms for an example.

See Also ssSetInputPortFrameData, ssSetOutputPortFrameData,
ssSetErrorStatus, WriteRTW

9-49

mdlSetDefaultPortComplexSignals

Purpose Set the numeric types (real, complex, or inherited) of ports whose
numeric types cannot be determined from block connectivity

Required No

Languages C, C++

Syntax #define MDL_SET_DEFAULT_PORT_COMPLEX_SIGNALS
void mdlSetDefaultPortComplexSignals(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description The Simulink engine invokes this method if the block has ports whose
numeric types cannot be determined from connectivity. (This usually
happens when the block is unconnected or is part of a feedback loop.)
This method must set the numeric types of all ports whose numeric
types are not set. This method is only valid for simulation, and must be
enclosed in a #if defined(MATLAB_MEX_FILE) statement.

If the block does not implement this method and at least one port
is known to be complex, the engine sets the unknown ports to
COMPLEX_YES; otherwise, it sets the unknown ports to COMPLEX_NO.

See Also ssSetOutputPortComplexSignal, ssSetInputPortComplexSignal

9-50

mdlSetDefaultPortDataTypes

Purpose Set the data types of ports whose data types cannot be determined from
block connectivity

Required No

Languages C, C++

Syntax #define MDL_SET_DEFAULT_PORT_DATA_TYPES
void mdlSetDefaultPortDataTypes(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description The Simulink engine invokes this method if the block has ports whose
data types cannot be determined from block connectivity. (This usually
happens when the block is unconnected or is part of a feedback loop.)
This method must set the data types of all ports whose data types are
not set. This method is only valid for simulation, and must be enclosed
in a #if defined(MATLAB_MEX_FILE) statement.

If the block does not implement this method and the engine cannot
determine the data types of any of its ports, the engine sets the data
types of all the ports to double. If the block does not implement this
method and the engine cannot determine the data types of some, but
not all, of its ports, the engine sets the unknown ports to the data type
of the port whose data type has the largest size.

The engine invokes an error if the mdlSetDefaultPortDataType
method attempts to modify the data type of a port when the data
type was previously specified by mdlSetInputPortDataType or
mdlSetOutputPortDataType. If an S-function has multiple input or
output ports, mdlSetDefaultPortDataType should check if the data
type of a port is still dynamic before attempting to set the type. For
example, the mdlSetDefaultPortDataType uses the following lines to
check if the data type of the second input port is still unknown.

9-51

mdlSetDefaultPortDataTypes

if (ssGetInputPortDataType(S, 1) == DYNAMICALLY_TYPED) {

ssSetInputPortDataType(S, 1, SS_UINT8);

}

See Also ssSetOutputPortDataType, ssSetInputPortDataType

9-52

mdlSetDefaultPortDimensionInfo

Purpose Set the default dimensions of the signals accepted or emitted by a C
MEX S-function’s ports

Required No

Languages C, C++

Syntax #define MDL_SET_DEFAULT_PORT_DIMENSION_INFO
void mdlSetDefaultPortDimensionInfo(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description The Simulink engine calls this method during signal dimension
propagation when a model does not supply enough information to
determine the dimensionality of signals that can enter or leave the
block represented by S. This method should set the dimensions of any
input and output ports that are dynamically sized to default values.
This method is only valid for simulation, and must be enclosed in a #if
defined(MATLAB_MEX_FILE) statement.

If the S-function does not implement this method, the engine tries to
find a set of dimensions that will satisfy the dimension propagation
rules implemented using mdlSetInputPortDimensionInfo and
mdlSetOutputPortDimensionInfo. This process might not be able to
produce a valid set of dimensions for S-functions with special dimension
requirements.

The engine invokes an error if the mdlSetDefaultPortDimensionInfo
method attempts to modify the dimensions of a port when the dimensions
were previously specified by mdlSetInputPortDimensionInfo or
mdlSetOutputPortDimensionInfo. If an S-function has multiple input
or output ports, mdlSetDefaultPortDimensionInfo should check if
the dimensions of the port are still dynamic before attempting to set
the dimensions. For example, the mdlSetDefaultPortDimensionInfo

9-53

mdlSetDefaultPortDimensionInfo

uses the following lines to check if the dimensions of the first output
port are still unknown.

if (ssGetOutputPortWidth(S, 0) == DYNAMICALLY_SIZED) {

ssSetOutputPortMatrixDimensions(S, 0, 1, 1);

}

Example See sfun_matadd.c for an example of how to use this function.

See Also ssSetErrorStatus, ssSetOutputPortMatrixDimensions

9-54

mdlSetInputPortComplexSignal

Purpose Set the numeric types (real, complex, or inherited) of the signals
accepted by an input port

Required No

Languages C, C++

Syntax #define MDL_SET_INPUT_PORT_COMPLEX_SIGNAL
void mdlSetInputPortComplexSignal(SimStruct *S, int_T port,
CSignal_T csig)

Arguments S
SimStruct representing an S-Function block.

port
Index of a port.

csig
Numeric type of signal, either COMPLEX_NO (real) or COMPLEX_YES
(complex).

Description The Simulink engine calls this routine to set the input port numeric
type for inputs that have this attribute set to COMPLEX_INHERITED.
The input csig is the proposed numeric type for this input port. This
method is only valid for simulation. C MEX S-functions must enclosed
this method in a #if defined(MATLAB_MEX_FILE) statement.

The S-function must check whether the proposed numeric type
is a valid type for the specified port. If it is valid, a C MEX
S-function sets the numeric type of the specified input port using
ssSetInputPortComplexSignal. Otherwise, it reports an error using
ssSetErrorStatus.

The S-function can also set the numeric types of other input and output
ports with inherited numeric types. The engine reports an error if the
S-function changes the numeric type of a port whose numeric type is
known.

9-55

mdlSetInputPortComplexSignal

If the S-function does not implement this routine, the engine assumes
that the S-function accepts a real or complex signal and sets the input
port numeric type to the specified value.

The engine calls this method until all input ports with inherited
numeric types have their numeric types specified.

Example See sdotproduct.c for an example of how to use this function.

See Also ssSetErrorStatus, ssSetInputPortComplexSignal,
SetInputPortComplexSignal

9-56

mdlSetInputPortDataType

Purpose Set the data types of the signals accepted by an input port

Required No

Languages C, C++

Syntax #define MDL_SET_INPUT_PORT_DATA_TYPE
void mdlSetInputPortDataType(SimStruct *S, int_T port,
DTypeId id)

Arguments S
SimStruct representing an S-Function block.

port
Index of a port.

id
Data type ID.

Description The Simulink engine calls this routine to set the data type of port when
port has an inherited data type. The data type id is the proposed
data type for this port. Data type IDs for the built-in data types
can be found in simstruc_types.h. This method is only valid for
simulation. C MEX S-functions must enclose this method in a #if
defined(MATLAB_MEX_FILE) statement.

The S-function must check whether the specified data type is a
valid data type for the specified port. If it is a valid data type,
a C MEX S-functions sets the data type of the input port using
ssSetInputPortDataType. Otherwise, it reports an error using
ssSetErrorStatus.

The S-function can also set the data types of other input and output
ports if they are unknown. The engine reports an error if the S-function
changes the data type of a port whose data type has been set.

9-57

mdlSetInputPortDataType

If the block does not implement this routine, the engine assumes that
the block accepts any data type and sets the input port data type to
the specified value.

The engine calls this method until all input ports with inherited data
types have their data types specified.

See Also ssSetErrorStatus, ssSetInputPortDataType, SetInputPortDataType

9-58

mdlSetInputPortDimensionInfo

Purpose Set the dimensions of the signals accepted by an input port

Required No

Languages C, C++

Syntax #define MDL_SET_INPUT_PORT_DIMENSION_INFO
void mdlSetInputPortDimensionInfo(SimStruct *S, int_T port,

const DimsInfo_T *dimsInfo)

Arguments S
SimStruct representing an S-Function block.

port
Index of a port.

dimsInfo
Structure that specifies the signal dimensions supported by the
port.

See ssSetInputPortDimensionInfo for a description of this structure.

Description The Simulink engine calls this method during dimension propagation
with candidate dimensions dimsInfo for port. In C MEX S-functions,
if the proposed dimensions are acceptable, the method sets the actual
port dimensions, using ssSetInputPortDimensionInfo. If they are
unacceptable, the method generates an error via ssSetErrorStatus.

This method is only valid for simulation. A C MEX S-function must
enclose the method in a #if defined(MATLAB_MEX_FILE) statement.

Note This method can set the dimensions of any other input or output
port whose dimensions derive from the dimensions of port.

9-59

mdlSetInputPortDimensionInfo

By default, the engine calls this method only if it can fully
determine the dimensionality of port from the port to which
it is connected. For C MEX S-functions, if the engine cannot
completely determine the dimensionality from port connectivity, it
invokes mdlSetDefaultPortDimensionInfo. If an S-function can
fully determine the port dimensionality from partial information,
set the option SS_OPTION_ALLOW_PARTIAL_DIMENSIONS_CALL in
mdlInitializeSizes, using ssSetOptions. If this option is set,
the engine invokes mdlSetInputPortDimensionInfo even if it can
only partially determine the dimensionality of the input port from
connectivity.

The engine calls this method until all input ports with inherited
dimensions have their dimensions specified.

Example See sfun_matadd.c for an example of how to use this function.

See Also ssSetErrorStatus, mdlSetOutputPortDimensionInfo,
SetInputPortDimensions

9-60

mdlSetInputPortDimensionsModeFcn

Purpose Propagate the dimensions mode

Required No

Languages C, C++

Syntax void mdlSetInputPortDimensionsModeFcn(SimStruct *S, int_T portIdx,
DimensionsMode_T dimsMode)

Arguments S
SimStruct representing an S-Function block.

portIdx
Index of a port.

dimsMode
Current dimensions mode. Possible values are
INHERIT_DIMS_MODE, FIXED_DIMS_MODE, and
VARIABLE_DIMS_MODE

Description The Simulink engine calls this optional method to enable this S-function
to set the dimensions mode of the input port indexed by portIdx.

C Example See sfun_varsize_holdStatesUntilReset.c for an example of how
to use this function.

See Also mdlSetInputPortDimensionInfo, SetInputPortDimensionsMode

9-61

mdlSetInputPortFrameData

Purpose Specify whether an input port accepts frame data

Required No

Languages C, C++

Syntax #define MDL_SET_INPUT_PORT_FRAME_DATA
void mdlSetInputPortFrameData(SimStruct *S, int_T port,
Frame_T frameData)

Arguments S
SimStruct representing an S-Function block.

port
Index of a port.

frameData
String indicating if the input port accepts frame data.

Description This method is called with the candidate frame setting for an input port.

For C MEX S-functions, frameData is either FRAME_YES or FRAME_NO.
If the proposed setting is acceptable, the method sets the actual
frame data setting using ssSetInputPortFrameData. If the setting is
unacceptable, the method generates an error via ssSetErrorStatus.
Note that any other input or output ports whose frame data settings
are implicitly defined by virtue of knowing the frame data setting of the
given port can also have their frame data settings configured. This
method is only valid for simulation, and must be enclosed in a #if
defined(MATLAB_MEX_FILE) statement.

The Simulink engine calls this method until all input ports with
inherited frame settings have their frame settings specified.

The use of frame-based signals (mode has a value of 1 or frameData has
a value of FRAME_YES) requires a DSP System Toolbox license.

9-62

mdlSetInputPortFrameData

See Also ssSetInputPortFrameData, ssSetOutputPortFrameData,
ssSetErrorStatus, SetInputPortSamplingMode

9-63

mdlSetInputPortSampleTime

Purpose Set the sample time of an input port that inherits its sample time from
the port to which it is connected

Required No

Languages C, C++

Syntax #define MDL_SET_INPUT_PORT_SAMPLE_TIME
void mdlSetInputPortSampleTime(SimStruct *S, int_T port,
real_T sampleTime, real_T offsetTime)

Arguments S
SimStruct representing an S-Function block.

port
Index of a port.

sampleTime
Inherited sample time for port.

offsetTime
Inherited offset time for port.

Description The Simulink engine invokes this method with the sample time that
port inherits from the port to which it is connected.

For C MEX S-functions, if the inherited sample time is acceptable,
this method sets the sample time of port to the inherited time, using
ssSetInputPortSampleTime and ssSetInputPortOffsetTime. If
the sample time is unacceptable, this method generates an error via
ssSetErrorStatus. Note that any other input or output ports whose
sample times are implicitly defined by virtue of knowing the sample
time of the given port can also have their sample times set via calls
to ssSetInputPortSampleTime or ssSetOutputPortSampleTime. This
method is only valid for simulation, and must be enclosed in a #if
defined(MATLAB_MEX_FILE) statement.

9-64

mdlSetInputPortSampleTime

The engine calls this method until all input ports with inherited sample
times are specified.

When inherited port-based sample times are specified, the sample time
is guaranteed to be one of the following where 0.0 < period < inf
and 0.0 <= offset < period.

Sample Time Offset Time

Continuous 0.0 0.0

Discrete period offset

Constant, triggered, and variable-step sample times are not propagated
to S-functions with port-based sample times.

Generally mdlSetInputPortSampleTime is called once per port with
the input port sample time. However, there can be cases where this
function is called more than once. This happens when the simulation
engine is converting continuous sample times to continuous but fixed
in minor steps sample times. When this occurs, the original values of
the sample times specified in mdlInitializeSizes are restored before
this method is called again.

The final sample time specified at the port can be different from (but
equivalent to) the sample time specified by this method. This occurs
when

• The model uses a fixed-step solver and the port has a continuous but
fixed in minor step sample time. In this case, the Simulink engine
converts the sample time to the fundamental sample time for the
model.

• The engine adjusts the sample time to be as numerically sound as
possible. For example, the engine converts [0.2499999999999, 0]
to [0.25, 0].

The S-function can examine the final sample times in
mdlInitializeSampleTimes.

9-65

mdlSetInputPortSampleTime

See Also ssSetInputPortSampleTime, ssSetOutputPortSampleTime,
mdlInitializeSampleTimes, SetInputPortSampleTime

9-66

mdlSetInputPortWidth

Purpose Set the width of an input port that accepts 1-D (vector) signals

Required No

Languages C, C++

Syntax #define MDL_SET_INPUT_PORT_WIDTH
void mdlSetInputPortWidth(SimStruct *S, int_T port, int_T width)

Arguments S
SimStruct representing an S-Function block.

port
Index of a port.

width
Width of signal.

Description This method is called with the candidate width for a dynamically
sized port. If the proposed width is acceptable, the method should
set the actual port width using ssSetInputPortWidth. If the size is
unacceptable, an error should be generated via ssSetErrorStatus. Note
that any other dynamically sized input or output ports whose widths
are implicitly defined by virtue of knowing the width of the given port
can also have their widths set via calls to ssSetInputPortWidth or
ssSetOutputPortWidth. This method is only valid for simulation, and
must be enclosed in a #if defined(MATLAB_MEX_FILE) statement.

The Simulink engine invokes this method until all dynamically sized
input ports are configured.

See Also ssSetInputPortWidth, ssSetOutputPortWidth, ssSetErrorStatus

9-67

mdlSetOutputPortComplexSignal

Purpose Set the numeric types (real, complex, or inherited) of the signals
accepted by an output port

Required No

Languages C, C++

Syntax #define MDL_SET_OUTPUT_PORT_COMPLEX_SIGNAL
void mdlSetOutputPortComplexSignal(SimStruct *S, int_T port,
CSignal_T csig)

Arguments S
SimStruct representing an S-Function block.

port
Index of a port.

csig
Numeric type of signal, either COMPLEX_NO (real) or COMPLEX_YES
(complex).

Description The Simulink engine calls this routine to set the output port numeric
type for outputs that have this attribute set to COMPLEX_INHERITED.
The input argument csig is the proposed numeric type for this output
port. The S-function must check whether the specified numeric type is a
valid type for the specified port.

If it is valid, C MEX S-functions set the numeric type of the specified
output port using ssSetOutputPortComplexSignal. Otherwise, the
S-function reports an error, using ssSetErrorStatus. This method is
only valid for simulation. C MEX S-functions must enclose the method
in a #if defined(MATLAB_MEX_FILE) statement.

The S-function can also set the numeric types of other input and output
ports with unknown numeric types. The engine reports an error if the
S-function changes the numeric type of a port whose numeric type is
known.

9-68

mdlSetOutputPortComplexSignal

If the S-function does not implement this routine, the engine assumes
that the S-function accepts a real or complex signal and sets the output
port numeric type to the specified value.

The engine calls this method until all output ports with inherited
numeric types have their numeric types specified.

Example See sdotproduct.c for an example of how to use this function.

See Also ssSetOutputPortComplexSignal, ssSetErrorStatus,
SetOutputPortComplexSignal

9-69

mdlSetOutputPortDataType

Purpose Set the data type of the signals emitted by an output port

Required No

Languages C, C++

Syntax #define MDL_SET_OUTPUT_PORT_DATA_TYPE
void mdlSetOutputPortDataType(SimStruct *S, int_T port,
DTypeId id)

Arguments S
SimStruct representing an S-Function block.

port
Index of an output port.

id
Data type ID.

Description The Simulink engine calls this routine to set the data type of port when
port has an inherited data type. The data type ID id is the proposed
data type for this port. Data type IDs for the built-in data types can be
found in simstruc_types.h. The S-function must check whether the
specified data type is a valid data type for the specified port.

If it is a valid data type, a C MEX S-function sets the data type of
port using ssSetOutputPortDataType. Otherwise, the S-function
reports an error, using ssSetErrorStatus. This method is only valid
for simulation. C MEX S-functions must enclose the method in a #if
defined(MATLAB_MEX_FILE) statement.

The S-function can also set the data types of other input and output
ports if their data types have not been set. The engine reports an error
if the S-function changes the data type of a port whose data type has
been set.

If the block does not implement this method, the engine assumes that
the block supports any data type and sets the output port data type to
the specified value.

9-70

mdlSetOutputPortDataType

The engine calls this method until all output ports with inherited data
types have their data types specified.

See Also ssSetOutputPortDataType, ssSetErrorStatus,
SetOutputPortDataType

9-71

mdlSetOutputPortDimensionInfo

Purpose Set the dimensions of the signals accepted by an output port

Required No

Languages C, C++

Syntax #define MDL_SET_OUTPUT_PORT_DIMENSION_INFO
void mdlSetOutputPortDimensionInfo(SimStruct *S, int_T port,

const DimsInfo_T *dimsInfo)

Arguments S
SimStruct representing an S-Function block.

port
Index of a port.

dimsInfo
Structure that specifies the signal dimensions supported by port.

See ssSetInputPortDimensionInfo for a description of this structure.

Description The Simulink engine calls this method with candidate dimensions
dimsInfo for port. In C MEX S-functions, if the proposed dimensions
are acceptable, the method sets the actual port dimensions, using
ssSetOutputPortDimensionInfo. If they are unacceptable, the method
generates an error via ssSetErrorStatus. This method is only valid
for simulation. C MEX S-functions must enclose the method in a #if
defined(MATLAB_MEX_FILE) statement.

Note This method can set the dimensions of any other input or output
port whose dimensions derive from the dimensions of port.

By default, the engine calls this method only if it can fully
determine the dimensionality of port from the port to which it is

9-72

mdlSetOutputPortDimensionInfo

connected. In C MEX S-functions, if the engine cannot completely
determine the dimensionality from port connectivity, it invokes
mdlSetDefaultPortDimensionInfo. If an S-function can fully
determine the port dimensionality from partial information,
set the option SS_OPTION_ALLOW_PARTIAL_DIMENSIONS_CALL in
mdlInitializeSizes, using ssSetOptions. If this option is set,
the engine invokes mdlSetOutputPortDimensionInfo even if it can
only partially determine the dimensionality of the output port from
connectivity.

The engine calls this method until all output ports with inherited
dimensions have their dimensions specified.

Example See sfun_matadd.c for an example of how to use this function.

See Also ssSetErrorStatus, ssSetOutputPortDimensionInfo,
SetOutputPortDimensions

9-73

mdlSetOutputPortSampleTime

Purpose Set the sample time of an output port that inherits its sample time from
the port to which it is connected

Required No

Languages C, C++

Syntax #define MDL_SET_OUTPUT_PORT_SAMPLE_TIME
void mdlSetOutputPortSampleTime(SimStruct *S, int_T port,
real_T sampleTime, real_T offsetTime)

Arguments S
SimStruct representing an S-Function block.

port
Index of a port.

sampleTime
Inherited sample time for port.

offsetTime
Inherited offset time for port.

Description The Simulink engine calls this method with the sample time that port
inherits from the port to which it is connected.

For C MEX S-functions, if the inherited sample time is acceptable,
this method should set the sample time of port to the inherited
sample time and offset time, using ssSetOutputPortSampleTime and
ssSetOutputPortOffsetTime. If the sample time is unacceptable,
this method generates an error via ssSetErrorStatus. This
method is only valid for simulation, and must be enclosed in a #if
defined(MATLAB_MEX_FILE) statement.

This method can set the sample time of any other input or output
port whose sample time derives from the sample time of port, using
ssSetInputPortSampleTime or ssSetOutputPortSampleTime in C
MEX S-functions.

9-74

mdlSetOutputPortSampleTime

Normally, sample times are propagated forward; however, if sources
feeding this block have inherited sample times, the engine might
choose to back-propagate known sample times to this block. When
back-propagating sample times, this method is called in succession for
all inherited output port signals.

See mdlSetInputPortSampleTime for more information about when this
method is called.

See Also ssSetOutputPortSampleTime, ssSetErrorStatus,
ssSetInputPortSampleTime, ssSetOutputPortSampleTime,
mdlSetInputPortSampleTime, SetOutputPortSampleTime

9-75

mdlSetOutputPortWidth

Purpose Set the width of an output port that outputs 1-D (vector) signals

Required No

Languages C, C++

Syntax #define MDL_SET_OUTPUT_PORT_WIDTH
void mdlSetOutputPortWidth(SimStruct *S, int_T port,
int_T width)

Arguments S
SimStruct representing an S-Function block.

port
Index of a port.

width
Width of signal.

Description This method is called with the candidate width for a dynamically sized
port. If the proposed width is acceptable, the method should go ahead
and set the actual port width, using ssSetOutputPortWidth. If the size
is unacceptable, an error should be generated via ssSetErrorStatus.
Note that any other dynamically sized input or output ports whose
widths are implicitly defined by virtue of knowing the width of the given
port can also have their widths set via calls to ssSetInputPortWidth or
ssSetOutputPortWidth. This method is only valid for simulation, and
must be enclosed in a #if defined(MATLAB_MEX_FILE) statement.

See Also ssSetInputPortWidth, ssSetOutputPortWidth, ssSetErrorStatus

9-76

mdlSetSimState

Purpose Set the simulation state of the C MEX S-function by restoring the
SimState.

Required No

Languages C, C++

Syntax #define MDL_SIM_STATE
void mdlSetSimState(SimStruct* S, const mxArray* in)

Arguments S
SimStruct representing an S-Function block.

const mxArray* in
Any valid MATLAB data.

Description The Simulink engine invokes this custom method at the beginning
of a simulation of the model containing S . Simulink sets the initial
simulation state of the S-function to the SimState of the model.

Example /* Function: mdlSetSimState
* Abstract:
* Unpack the MATLAB structure passed and restore it to
* the RunTimeData structure
*/

static void mdlSetSimState(SimStruct* S,
const mxArray* simSnap)
{

unsigned n = (unsigned)(ssGetInputPortWidth(S, 0));
RunTimeData_T* rtd =

(RunTimeData_T*)ssGetPWorkValue(S, 0);

/* Check and load the count value */
{

const mxArray* cnt =
mxGetField(simSnap, 0, fieldNames[0]);

9-77

mdlSetSimState

ERROR_IF_NULL(S,cnt,
"Count field not found in simulation state");

if (mxIsComplex(cnt) ||
!mxIsUint64(cnt) ||
mxGetNumberOfElements(cnt) != 1) {

ssSetErrorStatus(S, "Count field is invalid");
return;

}
rtd->cnt = ((uint64_T*)(mxGetData(cnt)))[0];

}

See Also mdlInitializeConditions, mdlGetSimState, SetSimState

9-78

mdlSetWorkWidths

Purpose Specify the sizes of the work vectors and create the run-time parameters
required by this C MEX S-function

Required No

Languages C, C++

Syntax #define MDL_SET_WORK_WIDTHS
void mdlSetWorkWidths(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description The Simulink engine calls this optional method to enable this S-function
to set the sizes of state and work vectors that it needs to store global
data and to create run-time parameters (see “Run-Time Parameters” on
page 8-8). The engine invokes this method after it has determined the
input port width, output port width, and sample times of the S-function.
This allows the S-function to size the state and work vectors based
on the number and sizes of inputs and outputs and/or the number
of sample times. This method specifies the state and work vector
sizes via the macros ssGetNumContStates, ssSetNumDiscStates,
ssSetNumRWork, ssSetNumIWork, ssSetNumPWork, ssSetNumModes, and
ssSetNumNonsampledZCs.

A C-MEX S-function needs to implement this method only if it does
not know the sizes of all the work vectors it requires when the engine
invokes the function’s mdlInitializeSizes method. If this S-function
implements mdlSetWorkWidths, it should initialize the sizes of any work
vectors that it needs to DYNAMICALLY_SIZED in mdlInitializeSizes,
even for those whose exact size it knows at that point. The S-function
should then specify the actual size in mdlSetWorkWidths. This
method is only valid for simulation, and must be enclosed in a #if
defined(MATLAB_MEX_FILE) statement.

9-79

mdlSetWorkWidths

Example For a full example of a C MEX S-function using DWork vectors,
see the file sfun_rtwdwork.c used in the Simulink model
sfcndemo_sfun_rtwdwork.

See Also mdlInitializeSizes, PostPropagationSetup

9-80

mdlSimStatusChange

Purpose Respond to a pause or resumption of the simulation of the model that
contains this C MEX S-function

Required No

Languages C, C++

Syntax #define MDL_SIM_STATUS_CHANGE
void mdlSimStatusChange(SimStruct *S,
ssSimStatusChangeType simStatus)

Arguments S
SimStruct representing an S-Function block.

simStatus
Status of the simulation, either SIM_PAUSE or SIM_CONTINUE.

Description The Simulink engine calls this routine when a simulation of the
model containing S pauses or resumes. This method is only valid for
simulation. C MEX S-functions must enclose the method in a #if
defined(MATLAB_MEX_FILE) statement.

Example #if defined(MATLAB_MEX_FILE)
#define MDL_SIM_STATUS_CHANGE
static void mdlSimStatusChange(SimStruct *S,

ssSimStatusChangeType simStatus) {
if (simStatus == SIM_PAUSE) {

ssPrintf("Pause has been called! \n");
} else if (simStatus == SIM_CONTINUE) {

ssPrintf("Continue has been called! \n");
}

}
#endif

See Also SimStatusChange

9-81

mdlStart

Purpose Initialize the state vectors of this C MEX S-function

Required No

Languages C, C++

Syntax #define MDL_START
void mdlStart(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description The Simulink engine invokes this optional method at the beginning of
a simulation. The method performs initialization activities that this
S-function requires only once, such as allocating memory, setting up
user data, or initializing states.

If your S-function resides in an enabled subsystem and needs to
reinitialize its states every whenever the subsystem is enabled, use
mdlInitializeConditions to initialize the state values, instead of
mdlStart.

In C MEX S-functions, use ssGetContStates and/or ssGetDiscStates to
get the states.

Example See sfun_directlook.c for an example of how to use this function.

See Also mdlInitializeConditions, ssGetContStates, ssGetDiscStates,
Start

9-82

mdlTerminate

Purpose Perform any actions required at termination of the simulation

Required Yes

Languages C, C++

Syntax void mdlTerminate(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description This method performs any actions, such as freeing of memory, that
must be performed when the simulation is terminated or when an
S-Function block is destroyed (e.g., when it is deleted from a model).

In C MEX S-functions, the mdlTerminate method is called after a
simulation (mdlStart is called).

In addition, if the SS_OPTION_CALL_TERMINATE_ON_EXIT option is set
for a given S-function, and if mdlInitializeSizes is called, then the
user is guaranteed that Simulink will call mdlTerminate. One reason
to set the SS_OPTION_CALL_TERMINATE_ON_EXIT option is to allocate
memory in mdlInitializeSizes rather than wait until mdlStart.

Note that Simulink calls mdlInitializeSizes under a number of
circumstances, including compilation and simulation. Simulink will
also call mdlInitializeSizes during model editing if you perform an
operation such as the setting of parameters.

In C MEX S-functions, use the UNUSED_ARG macro if the mdlTerminate
function does not perform any actions that require the SimStruct S to
indicate that the S input argument is required, but not used in the body
of the callback. To do this, insert the line

UNUSED_ARG(S)

after any declarations in mdTerminate.

9-83

mdlTerminate

Note If you have Simulink Coder, when generating code for a
noninlined C MEX S-function that contains this method, make sure
the method is not wrapped in a #if defined(MATLAB_MEX_FILE)
statement. For example:

#if defined(MATLAB_MEX_FILE)
static void mdlTerminate(SimStruct *S)
{

/* Add mdlTerminate code here *
}
#endif

The define statement makes the mdlTerminate method available only
to a MATLAB MEX file. If the S-function is not inlined, Simulink Coder
cannot use this method, resulting in link or run-time errors.

Example Suppose your S-function allocates blocks of memory in mdlStart and
saves pointers to the blocks in a PWork vector. The following code
fragment would free this memory.

{
int i;
for (i = 0; i<ssGetNumPWork(S); i++) {

if (ssGetPWorkValue(S,i) != NULL) {
free(ssGetPWorkValue(S,i));

}
}

}

See Also ssSetOptions, Terminate

9-84

mdlUpdate

Purpose Update a block’s states

Required No

Languages C, C++

Syntax #define MDL_UPDATE
void mdlUpdate(SimStruct *S, int_T tid)

Arguments S
SimStruct representing an S-Function block.

tid
Task ID.

Description The Simulink engine invokes this optional method at each major
simulation time step. The method should compute the S-function’s
states at the current time step and store the states in the S-function’s
state vector. The method can also perform any other tasks that the
S-function needs to perform at each major time step.

Use this code if your S-function has one or more discrete states or does
not have direct feedthrough.

The reason for this is that most S-functions that do not have discrete
states but do have direct feedthrough do not have update functions.
Therefore, the engine is able to eliminate the need for the extra call in
these circumstances.

If your C MEX S-function needs to have its mdlUpdate routine called
and it does not satisfy either of the above two conditions, specify that
it has a discrete state, using the ssSetNumDiscStates macro in the
mdlInitializeSizes function.

In C MEX S-functions, the tid (task ID) argument specifies the task
running when the mdlOutputs routine is invoked. You can use this
argument in the mdlUpdate routine of a multirate S-Function block

9-85

mdlUpdate

to encapsulate task-specific blocks of code (see “Multirate S-Function
Blocks” on page 8-44).

Use the UNUSED_ARG macro if your C MEX S-function does not contain
task-specific blocks of code to indicate that the tid input argument is
required but not used in the body of the callback. To do this, insert
the line

UNUSED_ARG(tid)

after the declarations in mdlUpdate.

Note If you have Simulink Coder, when generating code for a
noninlined C MEX S-function that contains this method, make sure
the method is not wrapped in a #if defined(MATLAB_MEX_FILE)
statement. For example:

#define MDL_UPDATE
#if defined(MDL_UPDATE) && defined(MATLAB_MEX_FILE)
static void mdlUpdate(SimStruct *S, int_T tid)
{

/* Add mdlUpdate code here *
}
#endif

The define statement makes the mdlUpdate method available only to
a MATLAB MEX file. If the S-function is not inlined, Simulink Coder
cannot use this method, resulting in link or run-time errors.

Example For an example that uses this function to update discrete states, see
dsfunc.c. For an example that uses this function to update the transfer
function coefficients of a time-varying continuous transfer function,
see stvctf.c.

See Also mdlDerivatives, ssGetContStates, ssGetDiscStates, Update

9-86

mdlZeroCrossings

Purpose Update zero-crossing vector

Required No

Languages C, C++

Syntax #define MDL_ZERO_CROSSINGS
void mdlZeroCrossings(SimStruct *S)

Arguments S
SimStruct representing an S-Function block.

Description An S-function needs to provide this optional method only if it does
zero-crossing detection. Implementing zero-crossing detection typically
requires using the zero-crossing and mode work vectors to determine
when a zero crossing occurs and how the S-function’s outputs should
respond to this event. The mdlZeroCrossings method should update
the S-function’s zero-crossing vector, using ssGetNonsampledZCs.

You can use the optional mdlZeroCrossings routine when your
S-function has registered the CONTINUOUS_SAMPLE_TIME and has
nonsampled zero crossings (ssGetNumNonsampledZCs(S) > 0). The
mdlZeroCrossings routine is used to provide the Simulink engine with
signals that are to be tracked for zero crossings. These are typically

• Continuous signals entering the S-function

• Internally generated signals that cross zero when a discontinuity
would normally occur in mdlOutputs

Thus, the zero-crossing signals are used to locate the discontinuities and
end the current time step at the point of the zero crossing. To provide
the engine with zero-crossing signals, mdlZeroCrossings updates the
ssGetNonsampleZCs(S) vector.

Example For an example, see sfun_zc_sat.c. A detailed description of this
example can be found in “Zero Crossings” on page 8-50.

9-87

mdlZeroCrossings

See Also mdlInitializeSizes, ssGetNonsampledZCs

9-88

Outputs

Purpose Compute the signals that this MATLAB S-function block emits

Required Yes

Language MATLAB

Syntax Outputs(s)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

Description The Simulink engine invokes this required method at each simulation
time step. In a Level-2 MATLAB S-function, the Outputs method
calculates the S-function’s outputs at the current time step and store
the results in the run-time object’s OutputPort(n).Data property. In
addition, for S-functions with a variable sample time, the Outputs
method computes the next sample time hit.

Use the run-time object method IsSampleHit to determine if the
current simulation time is one at which a task handled by this block is
active. For port-based sample times, use the IsSampleHit property of
the run-time object’s InputPort or OutputPort methods to determine if
the port produces outputs or accepts inputs at the current simulation
time step.

Set the run-time object’s NextTimeHit property to specify the time of
the next sample hit for variable sample-time S-functions.

See Also Simulink.RunTimeBlock, Simulink.MSFcnRunTimeBlock, mdlOutputs

9-89

PostPropagationSetup

Purpose Specify the sizes of the work vectors and create the run-time parameters
required by this MATLAB S-function

Required No

Language MATLAB

Syntax PostPropagationSetup(s)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

Description The Simulink engine calls this optional method to enable this S-function
to set the sizes of state and work vectors that it needs to store global
data and to create run-time parameters (see “Run-Time Parameters” on
page 8-8). The engine invokes this method after it has determined the
input port width, output port width, and sample times of the S-function.
This allows the S-function to size the state and work vectors based
on the number and sizes of inputs and outputs and/or the number of
sample times.

A Level-2 MATLAB S-function must implement this method if any
DWork vectors are used in the S-function. In the case of MATLAB
S-functions, this method sets the number of DWork vectors and
initializes their attributes. For example, the following code in the
PostPropagationSetup method specifies the usage for the first DWork
vector:

s.DWork(1).Usage = type;

where s is an instance of the Simulink.MSFcnRunTimeBlock class
representing the Level-2 MATLAB S-Function block and type is one
of the following:

• DWork

9-90

PostPropagationSetup

• DState

• Scratch

• Mode

Example For a full example of a Level-2 MATLAB S-function using DWork
vectors, see the file adapt_lms.m used in the Simulink model
sldemo_msfcn_lms.

See Also setup, Simulink.RunTimeBlock, mdlSetWorkWidths

9-91

ProcessParameters

Purpose Process the MATLAB S-function’s parameters

Required No

Language MATLAB

Syntax ProcessParameters(s)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

Description This is an optional routine that the Simulink engine calls after
CheckParameters changes and verifies parameters. The processing is
done at the top of the simulation loop when it is safe to process the
changed parameters. This function is only valid for simulation.

The purpose of this routine is to process newly changed parameters. An
example is to cache parameter changes in work vectors. The engine
does not call this routine when it is used with the Simulink Coder
product. Therefore, if you use this routine in an S-function designed for
use with the Simulink Coder product, you must write your S-function
so that it doesn’t rely on this routine. To do this, you must inline your
S-function by using the Target Language Compiler. For information on
inlining S-functions, see “Inlining S-Functions”.

See Also CheckParameters, Simulink.MSFcnRunTimeBlock,
mdlProcessParameters

9-92

Projection

Purpose Perturb the solver’s solution of a system’s states to better satisfy
time-invariant solution relationships

Required No

Language MATLAB

Syntax Projection(s)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

Description This method is intended for use with S-functions that model dynamic
systems whose states satisfy time-invariant relationships, such as those
resulting from mass or energy conservation or other physical laws.
The Simulink engine invokes this method at each time step after the
model’s solver has computed the S-function’s states for that time step.
Typically, slight errors in the numerical solution of the states cause the
solutions to fail to satisfy solution invariants exactly. Your Projection
method can compensate for the errors by perturbing the states so that
they more closely approximate solution invariants at the current time
step. As a result, the numerical solution adheres more closely to the
ideal solution as the simulation progresses, producing a more accurate
overall simulation of the system modeled by your S-function.

Your Projection method’s perturbations of system states must fall
within the solution error tolerances specified by the model in which the
S-function is embedded. Otherwise, the perturbations may invalidate
the solver’s solution. It is up to your Projection method to ensure that
the perturbations meet the error tolerances specified by the model.
See “Perturb System States Using a Solution Invariant” on page 9-94
for a simple method for perturbing a system’s states. The following
articles describe more sophisticated perturbation methods that your
mdlProjection method can use.

9-93

Projection

• C.W. Gear, “Maintaining Solution Invariants in the Numerical
Solution of ODEs,” Journal on Scientific and Statistical Computing,
Vol. 7, No. 3, July 1986.

• L.F. Shampine, “Conservation Laws and the Numerical Solution of
ODEs I,” Computers and Mathematics with Applications, Vol. 12B,
1986, pp. 1287–1296.

• L.F. Shampine, “Conservation Laws and the Numerical Solution of
ODEs II,” Computers and Mathematics with Applications, Vol. 38,
1999, pp. 61–72.

Example Perturb System States Using a Solution Invariant

Here is a simple, Taylor-series-based approach to perturbing a system’s
states. Suppose your S-function models a dynamic system having

a solution invariant, g X t(,) , i.e., g is a continuous, differentiable
function of the system states, X , and time, t , whose value is constant
with time. Then

X X J J J Rn n n
T

n n
T

n≅ + −* () 1

where

• Xn is the system’s ideal state vector at the solver’s current time step

• Xn
* is the approximate state vector computed by the solver at the

current time step

• Jn is the Jacobian of the invariant function evaluated at the point in
state space specified by the approximate state vector at the current
time step:

J
g
X

X tn n n= ∂
∂

(,)*

• tn is the time at the current time step

9-94

Projection

• Rn is the residual (difference) between the invariant function

evaluated at Xn and Xn
* at the current time step:

R g X t g X tn n n n n= −(,) (,)*

Note The value of g X tn n(,) is the same at each time step and is
known by definition.

Given a continuous, differentiable invariant function for the system
that your S-function models, this formula allows your S-function’s
mdlProjection method to compute a perturbation

J J J Rn
T

n n
T

n()−1

of the solver’s numerical solution, Xn
* , that more closely matches the

ideal solution, Xn , keeping the S-function’s solution from drifting from
the ideal solution as the simulation progresses.

MATLAB Example

This example illustrates how the perturbation method outlined in the
previous section can keep a model’s numerical solution from drifting
from the ideal solution as a simulation progresses. Consider the
following model,mdlProjectionEx1:

The PredPrey block references an S-function, predprey_noproj.m, that
uses the Lotka-Volterra equations

9-95

Projection

x ax y
y cy x

= −
= − −

()
()
1
1

to model predator-prey population dynamics, where x t() is the

population density of the predators and y t() is the population density
of prey. The ideal solution to the predator-prey ODEs satisfies the
time-invariant function

x e y e dc cx a ay− − =

where a , c , and d are constants. The S-function assumes a = 1, c =
2, and d = 121.85.

The Invariant Residual block in this model computes the residual
between the invariant function evaluated along the system’s ideal
trajectory through state space and its simulated trajectory:

R d x e y en n
c cx

n
a ayn n= − − −

where xn and yn are the values computed by the model’s solver for the
predator and prey population densities, respectively, at the current
time step. Ideally, the residual should be zero throughout simulation of
the model, but simulating the model reveals that the residual actually
strays considerably from zero:

9-96

Projection

Now consider the following model, mdlProjectionEx2:

9-97

Projection

This model is the same as the previous model, except that its
S-function, predprey.m, includes a mdlProjection method that uses
the perturbation approach outlined in “Perturb System States Using a
Solution Invariant” on page 9-94 to compensate for numerical drift. As
a result, the numerical solution more closely tracks the ideal solution
as the simulation progresses as demonstrated by the residual signal,
which remains near or at zero throughout the simulation:

See Also Simulink.MSFcnRunTimeBlock, mdlProjection,

9-98

SetInputPortComplexSignal

Purpose Set the numeric types (real, complex, or inherited) of the signals
accepted by an input port

Required No

Language MATLAB

Syntax SetInputPortComplexSignal(s, port, csig)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

port
Integer value specifying index of port to be set.

csig
Integer value specifying whether the port accepts real (false or
0) or complex (true or 1) signals.

Description The Simulink engine calls this routine to set the input port numeric
type for inputs that have this attribute set to COMPLEX_INHERITED.
The input csig is the proposed numeric type for this input port. This
method is only valid for simulation.

The S-function must check whether the proposed numeric type is a valid
type for the specified port. If it is valid, level-2 MATLAB S-functions set
the numeric type of the specified input port using the line:

s.InputPort(port).Complexity = csig;

The S-function can also set the numeric types of other input and output
ports with inherited numeric types. The engine reports an error if the
S-function changes the numeric type of a port whose numeric type is
known.

9-99

SetInputPortComplexSignal

If the S-function does not implement this routine, the engine assumes
that the S-function accepts a real or complex signal and sets the input
port numeric type to the specified value.

The engine calls this method until all input ports with inherited
numeric types have their numeric types specified.

See Also Simulink.MSFcnRunTimeBlock, Simulink.BlockPortData,
mdlSetInputPortComplexSignal

9-100

SetInputPortDataType

Purpose Set the data types of the signals accepted by an input port

Required No

Language MATLAB

Syntax SetInputPortDataType(s, port, id)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

port
Integer value specifying index of port to be set.

id
Integer value specifying ID of port’s data type. Use
s.getDatatypeName(id) to get the data type’s name.

Description The Simulink engine calls this routine to set the data type of port when
port has an inherited data type. The data type id is the proposed data
type for this port. Data type IDs for the built-in data types can be found
in simstruc_types.h. This method is only valid for simulation.

The S-function must check whether the specified data type is a valid
data type for the specified port. If it is a valid data type, Level-2
MATLAB S-functions set the data type of the input port using the line:

s.InputPort(port).DatatypeID = id;

The S-function can also set the data types of other input and output
ports if they are unknown. The engine reports an error if the S-function
changes the data type of a port whose data type has been set.

If the block does not implement this routine, the engine assumes that
the block accepts any data type and sets the input port data type to
the specified value.

9-101

SetInputPortDataType

The engine calls this method until all input ports with inherited data
types have their data types specified.

See Also Simulink.MSFcnRunTimeBlock, Simulink.BlockPortData,
mdlSetInputPortDataType

9-102

SetInputPortDimensions

Purpose Set the dimensions of the signals accepted by an input port

Required No

Languages MATLAB

Syntax SetInputPortDimensions(s, port, dimsInfo)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

port
Integer value specifying index of port to be set.

dimsInfo
Array that specifies the signal dimensions supported by the port,
e.g., [5] for a 5-element vector signal or [3 3] for a 3-by-3 matrix
signal.

Description The Simulink engine calls this method during dimension propagation
with candidate dimensions dimsInfo for port.

A Level-2 MATLAB S-function sets the input port dimensions using
the line

s.InputPort(port).Dimensions = dimsInfo;

This method is only valid for simulation.

Note This method can set the dimensions of any other input or output
port whose dimensions derive from the dimensions of port.

By default, the engine calls this method only if it can fully determine
the dimensionality of port from the port to which it is connected.

9-103

SetInputPortDimensions

The engine calls this method until all input ports with inherited
dimensions have their dimensions specified.

See Also SetOutputPortDimensions, Simulink.MSFcnRunTimeBlock,
Simulink.BlockPortData, mdlSetInputPortDimensionInfo

9-104

SetInputPortDimensionsMode

Purpose Propagate the dimensions mode

Required No

Language MATLAB

Syntax SetInputPortDimensionsMode(s, port, dm)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

port
Integer value specifying index of port to be set.

dm
Integer value representing the dimensions mode of the port.

Description The Simulink engine calls this optional method to enable this S-function
to set the dimensions mode of the input port indexed by portIdx.

See Also SetInputPortDimensions, Simulink.MSFcnRunTimeBlock,
Simulink.BlockPortData, mdlSetInputPortDimensionsModeFcn

9-105

SetInputPortSamplingMode

Purpose Specify whether an input port accepts frame data

Required No

Language MATLAB

Syntax SetInputPortSamplingMode(s, port, mode)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

port
Integer value specifying the index of port whose sampling mode
is to be set.

mode
Integer value specifying the sampling mode of the port (0 =
sample, 1 = frame).

Description This method is called with the candidate frame setting for an input port.

For Level-2 MATLAB S-functions, if the value of mode is acceptable, this
method sets the sampling mode using the line

s.InputPort(port).SamplingMode = mode;

The Simulink engine calls this method until all input ports with
inherited frame settings have their frame settings specified.

The use of frame-based signals (mode has a value of 1 or frameData has
a value of FRAME_YES) requires a DSP System Toolbox license.

See Also Simulink.MSFcnRunTimeBlock, Simulink.BlockPortData,
mdlSetInputPortFrameData

9-106

SetInputPortSampleTime

Purpose Set the sample time of an input port that inherits its sample time from
the port to which it is connected

Required No

Language MATLAB

Syntax SetInputPortSampleTime(s, port, time)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

port
Integer value specifying the index of port whose sampling mode
is to be set.

time
Two-element array, [period offset], that specifies the period
and offset of the times that this port samples its input.

Description The Simulink engine invokes this method with the sample time that
port inherits from the port to which it is connected.

For Level-2 MATLAB S-functions, if the inherited sample time is
acceptable, this method sets the sample time and offset time using the
line

s.InputPort(port).SampleTime = time;

The engine calls this method until all input ports with inherited sample
times are specified.

When inherited port-based sample times are specified, the sample time
is guaranteed to be one of the following where 0.0 < period < inf
and 0.0 <= offset < period.

9-107

SetInputPortSampleTime

Sample Time Offset Time

Continuous 0.0 0.0

Discrete period offset

Constant, triggered, and variable-step sample times are not propagated
to S-functions with port-based sample times.

Generally SetInputPortSampleTime is called once per port with the
input port sample time. However, there can be cases where this function
is called more than once. This happens when the simulation engine is
converting continuous sample times to continuous but fixed in minor
steps sample times. When this occurs, the original values of the sample
times specified in setup are restored before this method is called again.

The final sample time specified at the port can be different from (but
equivalent to) the sample time specified by this method. This occurs
when

• The model uses a fixed-step solver and the port has a continuous but
fixed in minor step sample time. In this case, the Simulink engine
converts the sample time to the fundamental sample time for the
model.

• The engine adjusts the sample time to be as numerically sound as
possible. For example, the engine converts [0.2499999999999, 0]
to [0.25, 0].

The S-function can examine the final sample times in setup.

See Also setup, Simulink.MSFcnRunTimeBlock , mdlSetInputPortSampleTime

9-108

SetOutputPortComplexSignal

Purpose Set the numeric types (real, complex, or inherited) of the signals
accepted by an output port

Required No

Language MATLAB

Syntax SetOutputPortComplexSignal(s, port, csig)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

port
Integer value specifying the index of port to be set.

csig
Integer value specifying whether the port produces real (0) or
complex (1) signals.

Description The Simulink engine calls this routine to set the output port numeric
type for outputs that have this attribute set to COMPLEX_INHERITED.
The input argument csig is the proposed numeric type for this output
port. The S-function must check whether the specified numeric type is a
valid type for the specified port.

If it is valid, Level-2 MATLAB S-functions set the numeric type of the
specified output port using the line

s.OutputPort(port).Complexity = csig;

The S-function can also set the numeric types of other input and output
ports with unknown numeric types. The engine reports an error if the
S-function changes the numeric type of a port whose numeric type is
known.

9-109

SetOutputPortComplexSignal

If the S-function does not implement this routine, the engine assumes
that the S-function accepts a real or complex signal and sets the output
port numeric type to the specified value.

The engine calls this method until all output ports with inherited
numeric types have their numeric types specified.

Example See sdotproduct.c for an example of how to use this function.

See Also Simulink.MSFcnRunTimeBlock , Simulink.BlockPortData,
mdlSetOutputPortComplexSignal

9-110

SetOutputPortDataType

Purpose Set the data type of the signals emitted by an output port

Required No

Language MATLAB

Syntax SetOutputPortDataType(s, port, id)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

port
Integer value specifying index of port to be set.

id
Integer value specifying ID of port’s data type. Use
s.getDatatypeName(id) to get the data type’s name.

Description The Simulink engine calls this routine to set the data type of port when
port has an inherited data type. The data type ID id is the proposed
data type for this port. Data type IDs for the built-in data types can be
found in simstruc_types.h. The S-function must check whether the
specified data type is a valid data type for the specified port.

If it is a valid data type, Level-2 MATLAB S-functions set the data type
of the output port using the line

s.OutputPort(port).DatatypeID = id;

The S-function can also set the data types of other input and output
ports if their data types have not been set. The engine reports an error
if the S-function changes the data type of a port whose data type has
been set.

9-111

SetOutputPortDataType

If the block does not implement this method, the engine assumes that
the block supports any data type and sets the output port data type to
the specified value.

The engine calls this method until all output ports with inherited data
types have their data types specified.

See Also Simulink.MSFcnRunTimeBlock , Simulink.BlockPortData,
mdlSetOutputPortDataType

9-112

SetOutputPortDimensions

Purpose Set the dimensions of the signals accepted by an output port

Required No

Language MATLAB

Syntax SetOutputPortDimensions(s, port, dimsInfo)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

port
Integer value specifying the index of the port to be set.

dimsInfo
Array that specifies the signal dimensions supported by the port,
e.g., [5] for a 5-element vector signal or [3 3] for a 3-by-3 matrix
signal.

Description The Simulink engine calls this method with candidate dimensions
dimsInfo for port.

A Level-2 MATLAB S-function sets the output port dimensions using
the line

s.OutputPort(port).Dimensions = dimsInfo;

Note This method can set the dimensions of any other input or output
port whose dimensions derive from the dimensions of port.

By default, the engine calls this method only if it can fully determine
the dimensionality of port from the port to which it is connected.

9-113

SetOutputPortDimensions

The engine calls this method until all output ports with inherited
dimensions have their dimensions specified.

Example See sfun_matadd.c for an example of how to use this function.

See Also SetInputPortDimensions, Simulink.MSFcnRunTimeBlock ,
Simulink.BlockPortData, mdlSetOutputPortDimensionInfo

9-114

SetOutputPortSampleTime

Purpose Set the sample time of an output port that inherits its sample time from
the port to which it is connected

Required No

Language MATLAB

Syntax SetOutputPortSampleTime(s, port, time)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
S-Function block.

port
Integer value specifying the index of port whose sampling mode
is to be set.

time
Two-element array, [period offset], that specifies the period
and offset of the times that this port produces output.

Description The Simulink engine calls this method with the sample time that port
inherits from the port to which it is connected.

For Level-2 MATLAB S-functions, if the inherited sample time is
acceptable, this method sets the sample time and offset time using the
line

s.OutputPort(port).SampleTime = time;

This method can set the sample time of any other input or output port
whose sample time derives from the sample time of port, setting the
SampleTime property of the Simulink.BlockPortData object associated
with the port in Level-2 MATLAB S-functions.

Normally, sample times are propagated forward; however, if sources
feeding this block have inherited sample times, the engine might

9-115

SetOutputPortSampleTime

choose to back-propagate known sample times to this block. When
back-propagating sample times, this method is called in succession for
all inherited output port signals.

See SetInputPortSampleTime for more information about when this
method is called.

See Also SetInputPortSampleTime, Simulink.MSFcnRunTimeBlock,
Simulink.BlockPortData, mdlSetOutputPortSampleTime

9-116

SetSimState

Purpose Set the simulation state of the MATLAB S-function by restoring the
SimState.

Required No

Language MATLAB

Syntax SetSimState(s, in)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

in
The MATLAB data of type returned by GetSimState.

Description The Simulink engine invokes this custom method at the beginning
of a simulation of the model containing S . Simulink sets the initial
simulation state of the S-function to the SimState of the model.

See Also InitializeConditions, GetSimState, mdlSetSimState

9-117

setup

Purpose Specify the number of inputs, outputs, states, parameters, and other
characteristics of the MATLAB S-function

Required Yes

Language MATLAB

Syntax setup(s)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

Description This is the first S-function callback methods that the Simulink engine
calls.

The Level-2 MATLAB S-function setup method performs nearly the
same tasks as the C MEX S-function mdlInitializeSizes method,
with two significant differences. The setup method does not initialize
discrete state information, but it does specify the block sample times,
eliminating the need for an mdlInitializeSampleTimes method.
Use the following properties and methods of the run-time object s to
configure the S-function:

• Specify the number of parameters that this S-function supports,
using s.NumDialogPrms.

Use s.DialogPrmsTunable to set the tunability of each dialog
parameter. When a parameter has been specified as not tunable,
the Simulink engine issues an error during simulation (or when in
external mode when using the Simulink Coder product) if an attempt
is made to change the parameter.

• Specify the number of continuous states that this function has,
using s.NumContStates. Specify discrete state information in the
PostPropagationSetup method using a DWork vector.

• Configure the block’s input ports, including:

9-118

setup

- Specify the number of input ports that this S-function has, using
s.NumInputPorts.

- Specify the dimensions of the ith input port, using
s.InputPort(i).Dimensions.

- If using port-based sample times, specify the sample time of the
ith input port, using s.InputPort(i).SampleTime.

- For each input port, specify whether it has direct feedthrough,
using s.InputPort(i).DirectFeedthrough.

A port has direct feedthrough if the input is used in the Outputs
method to calculate the output or the next sample time, for an
S-function with a variable sample time. The direct feedthrough
flag for each input port can be set to either 1=yes or 0=no. It
should be set to 1 if the input, u, is used in the Outputs method.
Setting the direct feedthrough flag to 0 tells the engine that u
is not used in this S-function method. Violating this leads to
unpredictable results.

See Simulink.BlockData and its parent and children classes for
a list of all the properties and methods associated with a Level-2
MATLAB S-function input port.

• Configure the block’s output ports, including:

- Specify the number of output ports that the block has, using
s.NumOutputPorts.

- Specify the dimensions of the ith output port, using
s.OutputPort(i).Dimensions.

- If using port-based sample times, specify the sample time of the
ith output port, using s.OutputPort(i).SampleTime.

• Set the block-based sample times (i.e., sample rates), using
s.SampleTimes.

See “Sample Times” on page 8-32 for a complete discussion of sample
time issues.

9-119

setup

For multirate S-functions, the suggested approach to setting sample
times is via the port-based sample times method. When you create a
multirate S-function, you must take care to verify that, when slower
tasks are preempted, your S-function correctly manages data so as to
avoid race conditions. When port-based sample times are specified,
the block cannot inherit a constant sample time at any port.

See “Using the setup Method” on page 3-8 for additional information
and examples using the setup method.

Dynamically Sized Block Features

You can set the parameters NumContStates, NumDiscStates,
NumInputs, NumOutputs, NumRWork, NumIWork, NumPWork, NumModes, and
NumNonsampledZCs to a fixed nonnegative integer or tell the Simulink
engine to size them dynamically:

• DYNAMICALLY_SIZED -- Sets lengths of states, work vectors, and so
on to values inherited from the driving block. It sets widths to the
actual input widths, according to the scalar expansion rules unless
you use mdlSetWorkWidths to set the widths.

• 0 or positive number -- Sets lengths (or widths) to the specified
values. The default is 0.

See Also Simulink.BlockData, Simulink.MSFcnRunTimeBlock,
mdlInitializeSizes, mdlInitializeSampleTimes

9-120

SimStatusChange

Purpose Respond to a pause or resumption of the simulation of the model that
contains this MATLAB S-function

Required No

Languages MATLAB

Syntax SimStatusChange(s, status)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

status
Status of the simulation, either 0 when paused or 1 when
continued.

Description The Simulink engine calls this routine when a simulation of the
model containing S pauses or resumes. This method is only valid for
simulation.

See Also Simulink.MSFcnRunTimeBlock, mdlSimStatusChange

9-121

Start

Purpose Initialize the state vectors of this MATLAB S-function

Required No

Language MATLAB

Syntax Start(s)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

Description The Simulink engine invokes this optional method at the beginning of
a simulation. The method performs initialization activities that this
S-function requires only once, such as allocating memory, setting up
user data, or initializing states.

If your S-function resides in an enabled subsystem and needs to
reinitialize its states every whenever the subsystem is enabled, use
InitializeConditions to initialize the state values, instead of Start.

Use the properties of Simulink.RunTimeBlock to get the states.

Example See msfcn_varpulse.m for an example of how to use this function.

See Also InitializeConditions, Simulink.RunTimeBlock, mdlStart

9-122

Terminate

Purpose Perform any actions required at termination of the simulation

Required Yes

Language MATLAB

Syntax Terminate(s)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

Description This method performs any actions, such as freeing of memory, that
must be performed when the simulation is terminated or when an
S-Function block is destroyed (e.g., when it is deleted from a model).

See Also mdlTerminate

9-123

Update

Purpose Update a block’s states

Required No

Language MATLAB

Syntax Update(s)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

Description The Simulink engine invokes this optional method at each major
simulation time step. The method should compute the S-function’s
states at the current time step and store the states in the S-function’s
state vector. The method can also perform any other tasks that the
S-function needs to perform at each major time step.

Use this code if your S-function has one or more discrete states or does
not have direct feedthrough.

The reason for this is that most S-functions that do not have discrete
states but do have direct feedthrough do not have update functions.
Therefore, the engine is able to eliminate the need for the extra call in
these circumstances.

In Level-2 MATLAB S-functions, use the run-time object method
IsSampleHit to determine if the current simulation time is one at
which a task handled by this block is active. For port-based sample
times, use the IsSampleHit property of the run-time object’s InputPort
or OutputPort to determine if the port produces outputs or accepts
inputs at the current simulation time step.

Example For an example that uses this function to update discrete states, see
msfcn_unit_delay.m.

9-124

Update

See Also Derivatives, Simulink.RunTimeBlock,
Simulink.MSFcnRunTimeBlock, mdlUpdate

9-125

WriteRTW

Purpose Generate code generation data for the MATLAB S-function

Required No

Language MATLAB

Syntax WriteRTW(s)

Arguments s
Instance of Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block.

Description This function is called when the Simulink Coder product is generating
the model.rtw file.

In Level-2 MATLAB S-functions, use the run-time object’s
WriteRTWParam method to write custom parameters to the model.rtw
file.

Example See the S-function adapt_lms.m in the Simulink model
sldemo_msfcn_lms for an example.

See Also Simulink.MSFcnRunTimeBlock, mdlRTW

9-126

10

S-Function SimStruct
Functions Reference

• “S-Function SimStruct Functions” on page 10-2

• “SimStruct Macros and Functions Listed by Usage” on page 10-3

10 S-Function SimStruct Functions Reference

S-Function SimStruct Functions

In this section...

“About SimStruct Functions” on page 10-2

“Language Support” on page 10-2

“The SimStruct” on page 10-2

About SimStruct Functions
The Simulink software provides a set of functions for accessing the fields of
an S-function’s simulation data structure (SimStruct). S-function callback
methods use these functions to store and retrieve information about an
S-function.

Language Support
Some SimStruct functions are available only in some of the languages
supported by the Simulink software. The reference page for each SimStruct
macro or function lists the languages in which it is available and gives the
syntax for these languages.

Note Most SimStruct functions available in C are implemented as C macros.
Individual reference pages indicate any SimStruct macro that becomes a
function when you compile your S-function in debug mode (mex -g).

The SimStruct
The file simstruc.h is a C language header file that defines the Simulink
data structure and the SimStruct access macros. It encapsulates all the data
relating to the model or S-function, including block parameters and outputs.

There is one SimStruct data structure allocated for the Simulink model.
Each S-function in the model has its own SimStruct associated with it.
The organization of these SimStructs is much like a directory tree. The
SimStruct associated with the model is the root SimStruct. The SimStructs
associated with the S-functions are the child SimStructs.

10-2

SimStruct Macros and Functions Listed by Usage

SimStruct Macros and Functions Listed by Usage

In this section...

“Buses” on page 10-3

“Data Type” on page 10-4

“Dialog Box Parameters” on page 10-5

“Error Handling and Status” on page 10-6

“Function Call” on page 10-6

“Input and Output Ports” on page 10-7

“Model Reference” on page 10-14

“Run-Time Parameters” on page 10-15

“Sample Time” on page 10-16

“Simulation Information” on page 10-17

“State and Work Vector” on page 10-20

“Code Generation” on page 10-23

“Miscellaneous” on page 10-25

Buses

Macro Description

ssGetBusElementComplexSignal Get the signal complexity for a bus
element.

ssGetBusElementDataType Get the data type identifier for a bus
element.

ssGetBusElementDimensions Get the dimensions of a bus element.

ssGetBusElementName Get the name of a bus element.

ssGetBusElementNumDimensions Get the number of dimensions for a
bus element.

10-3

10 S-Function SimStruct Functions Reference

Macro Description

ssGetBusElementOffset Get the offset from the start of the
bus data type to a bus element.

ssGetNumBusElements Get the number of elements in a bus
signal.

ssGetSFcnParamName Get the value of a block parameter
for an S-function block.

ssIsDataTypeABus Determine whether a data type
identifier represents a bus signal.

ssRegisterTypeFromParameter Register a data type that a
parameter in the Simulink data type
table specifies.

ssSetBusInputAsStruct Specify whether to convert the input
bus signal for an S-function from
virtual to nonvirtual.

ssSetBusOutputAsStruct Specify whether the output bus
signal from an S-function must be
virtual or nonvirtual.

ssSetBusOutputObjectName Specify the name of the bus object
that defines the structure and type
of the output bus signal.

Data Type

Macro Description

ssGetDataTypeId Get the ID for a data type.

ssGetDataTypeIdAliasedThruTo Get the ID for the built-in data type
associated with a data type alias.

ssGetDataTypeName Get a data type’s name.

ssGetDataTypeSize Get a data type’s size.

ssGetDataTypeZero Get the zero representation of a data
type.

10-4

SimStruct Macros and Functions Listed by Usage

Macro Description

ssGetInputPortDataType Get the data type of an input port.

ssGetNumDataTypes Get the number of data types defined
by an S-function or the model.

ssGetOutputPortDataType Get the data type of an output port.

ssGetOutputPortSignal Get an output signal of any type
except double.

ssRegisterDataType Register a data type.

ssSetDataTypeSize Specify the size of a data type.

ssSetDataTypeZero Specify the zero representation of a
data type.

ssSetInputPortDataType Specify the data type of signals
accepted by an input port.

ssSetOutputPortDataType Specify the data type of an output
port.

Dialog Box Parameters

Macro Description

ssGetDTypeIdFromMxArray Get the Simulink data type of a
dialog parameter.

ssGetNumSFcnParams Get the number of parameters that
an S-function expects.

ssGetSFcnParam Get a parameter entered by a user in
the S-Function block dialog box.

ssGetSFcnParamsCount Get the actual number of parameters
specified by the user.

ssSetNumSFcnParams Set the number of parameters that
an S-function expects.

ssSetSFcnParamTunable Specify the tunability of a dialog box
parameter.

10-5

10 S-Function SimStruct Functions Reference

Error Handling and Status

Macro Description

ssGetErrorStatus Get a string that identifies the last
error.

ssPrintf Print a variable-content msg.

ssSetErrorStatus Report errors.

ssWarning Display a warning message.

Function Call

Macro Description

ssCallSystemWithTid Execute a function-call subsystem
connected to an S-function.

ssDisableSystemWithTid Disable a function-call subsystem
connected to this S-function block.

ssEnableSystemWithTid Enable a function-call subsystem
connected to this S-function.

ssGetCallSystemNumFcnCall-
Destinations

Get the number of function-call
destinations.

ssGetExplicitFCSSCtrl Determine whether this S-function
explicitly enables and disables the
function-call subsystem that it
invokes.

ssSetCallSystemOutput Specify that an output port element
issues a function call.

ssSetExplicitFCSSCtrl Specify whether an S-function
explicitly enables and disables the
function-call subsystem that it calls.

10-6

SimStruct Macros and Functions Listed by Usage

Input and Output Ports

I/O Port — Signal Specification

Macro Description

ssAllowSignalsWithMoreThan2D Enable S-function to work with
multidimensional input and
output signals.

ssGetInputPortComplexSignal Get the numeric type (complex
or real) of an input port.

ssGetInputPortDataType Get the data type of an input
port.

ssGetInputPortDirectFeedThrough Determine whether an input
port has direct feedthrough.

ssGetInputPortFrameData Determine whether a port
accepts signal frames.

ssGetInputPortOffsetTime Determine the offset time of an
input port.

ssGetInputPortRequiredContiguous Determine whether the signal
elements entering a port must be
contiguous.

ssGetInputPortSampleTime Determine the sample time of an
input port.

ssGetInputPortSampleTimeIndex Get the sample time index of an
input port.

ssGetOutputPortComplexSignal Get the numeric type (complex
or real) of an output port.

ssGetOutputPortDataType Get the data type of an output
port.

ssGetOutputPortFrameData Determine whether a port
outputs signal frames.

ssGetOutputPortOffsetTime Determine the offset time of an
output port.

10-7

10 S-Function SimStruct Functions Reference

I/O Port — Signal Specification (Continued)

Macro Description

ssGetOutputPortSampleTime Determine the sample time of an
output port.

ssSetInputPortComplexSignal Set the numeric type (real or
complex) of an input port.

ssSetInputPortDataType Set the data type of an input
port.

ssSetInputPortDirectFeedThrough Specify that an input port is a
direct-feedthrough port.

ssSetInputPortFrameData Specify whether a port accepts
signal frames.

ssSetInputPortOffsetTime Specify the sample time offset
for an input port.

ssSetInputPortRequiredContiguous Specify that the signal elements
entering a port must be
contiguous.

ssSetInputPortSampleTime Set the sample time of an input
port.

ssSetNumInputPorts Set the number of input ports on
an S-Function block.

ssSetNumOutputPorts Specify the number of output
ports on an S-Function block.

ssSetOneBasedIndexInputPort Specify that an input port
expects one-based indices.

ssSetOneBasedIndexOutputPort Specify that an output port emits
one-based indices.

ssSetOutputPortComplexSignal Specify the numeric type (real or
complex) of this port.

ssSetOutputPortDataType Specify the data type of an
output port.

10-8

SimStruct Macros and Functions Listed by Usage

I/O Port — Signal Specification (Continued)

Macro Description

ssSetOutputPortFrameData Specify whether a port outputs
framed data.

ssSetOutputPortOffsetTime Specify the sample time offset
value of an output port.

ssSetOutputPortSampleTime Specify the sample time of an
output port.

ssSetZeroBasedIndexInputPort Specify that an input port
expects zero-based indices.

ssSetZeroBasedIndexOutputPort Specify that an output port emits
zero-based indices.

I/O Port — Signal Dimensions

Macro Description

Register a method to handle
current dimensions update.

Register a method to check the
current input dimensions.

ssAllowSignalsWithMoreThan2D Enable S-function to work with
multidimensional signals.

Gets the current size of
dimension dIdx of input port
pIdx.

Gets the total width (total
number of elements) of the
signal at input port pIdx

Gets the current size of
dimension dIdx of the signal at
output port pIdx.

10-9

10 S-Function SimStruct Functions Reference

I/O Port — Signal Dimensions (Continued)

Macro Description

Gets the total width (total
number of elements) of the
signal at output port pIdx.

ssGetInputPortDimensions Get the dimensions of the signal
accepted by an input port.

ssGetInputPortDimensionSize Get the size of one dimension of
the signal entering an input port.

Gets the dimensions mode of the
input port indexed by pIdx,

ssGetInputPortNumDimensions Get the dimensionality of the
signals accepted by an input
port.

ssGetInputPortWidth Determine the width of an input
port.

ssGetOutputPortDimensions Get the dimensions of the signal
leaving an output port.

ssGetOutputPortDimensionSize Get the size of one dimension
of the signal leaving an output
port.

Sets the dimensions mode of the
output port indexed by pIdx.

ssGetOutputPortNumDimensions Get the number of dimensions of
an output port.

ssGetOutputPortWidth Determine the width of an
output port.

Sets the current size
corresponding to dimension
dIdx of the output signal at port
pIdx.

10-10

SimStruct Macros and Functions Listed by Usage

I/O Port — Signal Dimensions (Continued)

Macro Description

Set the block flag for resetting
the dIndex DWork size upon
subsystem reset.

ssSetInputPortDimensionInfo Set the dimensionality of an
input port.

Sets the dimensions mode of the
input port indexed by pIdx.

Set the dimensions of output
port outIdx to be equal than the
dimensions of input port inpIdx.ssSetInputPortMatrixDimensions Specify dimension information
for an input port that accepts
matrix signals.

ssSetInputPortVectorDimension Specify dimension information
for an input port that accepts
vector signals.

ssSetInputPortWidth Set the width of a 1-D (vector)
input port.

ssSetOutputPortDimensionInfo Specify the dimensionality of an
output port.

ssSetOutputPortMatrixDimensions Specify dimension information
for an output port that emits
matrix signals.

ssSetOutputPortVectorDimension Specify dimension information
for an output port that emits
vector signals.

ssSetOutputPortWidth Specify the width of a 1-D
(vector) output port.

10-11

10 S-Function SimStruct Functions Reference

I/O Port — Signal Dimensions (Continued)

Macro Description

ssSetOutputPortMatrixDimensions Specify the dimensions of a 2-D
(matrix) signal.

Register the method to handle
dimensions mode propagation
for each input port.

Set the type of output
dependency on the input
signal.

ssSetVectorMode Specify the vector mode that an
S-function supports.

I/O Port — Signal Access

Macro Description

ssGetInputPortBufferDstPort Determine the output port that
is overwriting an input port’s
memory buffer.

ssGetInputPortConnected Determine whether an
S-Function block port is
connected to a nonvirtual block.

ssGetInputPortOptimOpts Determine the reusability
setting of the memory allocated
to the input port of an S-function.

ssGetInputPortOverWritable Determine whether an input
port can be overwritten.

ssGetInputPortRealSignal Get the address of a real,
contiguous signal entering an
input port.

ssGetInputPortRealSignalPtrs Access the signal elements
connected to an input port.

10-12

SimStruct Macros and Functions Listed by Usage

I/O Port — Signal Access (Continued)

Macro Description

ssGetInputPortSignal Get the address of a contiguous
signal entering an input port.

ssGetInputPortSignalPtrs Get pointers to input signal
elements of type other than
double.

ssGetNumInputPorts Can be used in any routine
(except mdlInitializeSizes) to
determine how many input ports
a block has.

ssGetNumOutputPorts Can be used in any routine
(except mdlInitializeSizes)
to determine how many output
ports a block has.

ssGetOutputPortConnected Determine whether an output
port is connected to a nonvirtual
block.

ssGetOutputPortBeingMerged Determine whether the output
of this block is connected to a
Merge block.

ssGetOutputPortOptimOpts Determine the reusability of the
memory allocated to the output
port of an S-function.

ssGetOutputPortRealSignal Access the elements of a signal
connected to an output port.

ssGetOutputPortSignal Get the vector of signal elements
emitted by an output port.

ssSetInputPortOptimOpts Specify the reusability of the
memory allocated to the input
port of an S-function.

ssSetInputPortOverWritable Specify whether an input port is
overwritable by an output port.

10-13

10 S-Function SimStruct Functions Reference

I/O Port — Signal Access (Continued)

Macro Description

ssSetOutputPortOptimOpts Specify the reusability of the
memory allocated to the output
port of an S-function.

ssSetOutputPortOverwritesInputPort Specify whether an output port
can share its memory buffer with
an input port.

Model Reference

Macro Description

ssRTWGenIsModelReferenceRTW-
Target

Determine if the model reference
Simulink Coder target is generating.

ssRTWGenIsModelReferenceSIM-
Target

Determine if the model reference
simulation target is generating.

ssSetModelReferenceNormalMode-
Support

Specify if S-function can be used
in referenced model simulating in
normal mode.

ssSetModelReferenceSampleTime-
DefaultInheritance

Specify that a referenced model
containing this S-function can
inherit its sample time from its
parent model.

ssSetModelReferenceSampleTime-
DisallowInheritance

Specify that the use of this S-function
in a referenced model prevents the
referenced model from inheriting its
sample time from its parent model.

ssSetModelReferenceSampleTime-
InheritanceRule

Specify whether use of an S-function
in a referenced model prevents the
referenced model from inheriting its
sample time from the parent model.

10-14

SimStruct Macros and Functions Listed by Usage

Run-Time Parameters
These macros allow you to create, update, and access run-time parameters
corresponding to a block’s dialog parameters.

Macro Description

ssGetNumRunTimeParams Get the number of run-time
parameters created by this
S-function.

ssGetRunTimeParamInfo Get the attributes of a specified
run-time parameter.

Register all tunable dialog
parameters as run-time parameters.

ssRegDlgParamAsRunTimeParam Register a run-time parameter.

ssSetNumRunTimeParams Specify the number of run-time
parameters to be created by this
S-function.

ssSetRunTimeParamInfo Specify the attributes of a specified
run-time parameter.

Update all run-time parameters
corresponding to tunable dialog
parameters.

ssUpdateDlgParamAsRunTimeParam Update a run-time parameter.

ssUpdateRunTimeParamData Update the value of a specified
run-time parameter.

ssUpdateRunTimeParamInfo Update the attributes of a specified
run-time parameter from the
attributes of the corresponding
dialog parameters.

10-15

10 S-Function SimStruct Functions Reference

Sample Time

Macro Description

ssGetInputPortSampleTime Determine the sample time of an
input port.

ssGetInputPortSampleTimeIndex Get the sample time index of an
input port.

ssGetNumSampleTimes Get the number of sample times an
S-function has.

ssGetOffsetTime Determine one of an S-function’s
sample time offsets.

ssGetOutputPortSampleTime Determine the sample time of an
output port.

ssGetPortBasedSampleTimeBlock-
IsTriggered

Determine whether a block that uses
port-based sample times resides in a
triggered subsystem.

ssGetSampleTime Determine one of an S-function’s
sample times.

ssGetTNext Get the time of the next sample
hit in a discrete S-function with a
variable sample time.

ssIsContinuousTask Determine whether a specified rate
is the continuous rate.

ssIsSampleHit Determine the sample rate at which
an S-function is operating.

ssIsSpecialSampleHit Determine whether the current
sample time hits two specified rates.

ssSampleAndOffsetAreTriggered Determine whether a sample time
and offset value pair indicate a
triggered sample time.

ssSetInputPortSampleTime Set the sample time of an input port.

10-16

SimStruct Macros and Functions Listed by Usage

Macro Description

ssSetModelReferenceSampleTime-
DefaultInheritance

Specify that a referenced model
containing this S-function can
inherit its sample time from its
parent model.

ssSetModelReferenceSampleTime-
DisallowInheritance

Specify that the use of this S-function
in a referenced model prevents the
referenced model from inheriting its
sample time from its parent model.

ssSetModelReferenceSampleTime-
InheritanceRule

Specify whether use of an S-function
in a referenced model prevents the
referenced model from inheriting its
sample time from the parent model.

ssSetNumSampleTimes Set the number of sample times an
S-function has.

ssSetOffsetTime Specify the offset of a sample time.

ssSetSampleTime Specify a sample time for an
S-function.

ssSetTNext Specify the time of the next sample
hit in an S-function.

Simulation Information

Macro Description

ssGetBlockReduction Determine whether a block has
requested block reduction before the
simulation has begun and whether it
has actually been reduced after the
simulation loop has begun.

ssGetErrorStatus Get a string that identifies the last
error.

ssGetFixedStepSize Get the fixed step size of the model
containing the S-function.

10-17

10 S-Function SimStruct Functions Reference

Macro Description

ssGetInlineParameters Determine whether the user has set
the inline parameters option for the
model containing this S-function.

ssGetSimMode Determine the context in which
an S-function is being invoked:
normal simulation, external-mode
simulation, model editor, etc.

ssGetSimStatus Determine the current simulation
status.

ssGetSolverMode Get the solver mode being used to
solve the S-function.

ssGetSolverName Get the name of the solver being
used for the simulation.

ssGetStateAbsTol Get the absolute tolerance used by
the model’s variable-step solver for
a specified state.

ssGetStopRequested Get the value of the simulation stop
requested flag.

ssGetT Get the current base simulation
time.

ssGetTaskTime Get the current time for a task.

ssGetTFinal Get the end time of the current
simulation.

ssGetTNext Get the time of the next sample hit.

ssGetTStart Get the start time of the current
simulation.

ssIsExternalSim Determine if the model is running in
external mode.

ssIsFirstInitCond Determine whether the current
simulation time is equal to the
simulation start time.

10-18

SimStruct Macros and Functions Listed by Usage

Macro Description

ssIsMajorTimeStep Determine whether the current time
step is a major time step.

ssIsMinorTimeStep Determine whether the current time
step is a minor time step.

ssIsVariableStepSolver Determine whether the current
solver is a variable-step solver.

ssRTWGenIsAccelerator Determine if the model is running in
Accelerator mode.

ssSetStateAbsTol Set the values of the absolute
tolerances that the variable-step
solver will apply to the S-function
states.

ssSetBlockReduction Request that Simulink attempt to
reduce a block.

ssSetSimStateCompliance Specify how Simulink treats
an S-function when saving and
restoring the simulation state of a
model containing the S-function.

ssSetSimStateVisibility Specify whether or not the
simulation state of the S-function is
visible (accessible) in the simulation
state of the model.

ssSetSolverNeedsReset Ask Simulink to reset the solver.

ssSetStopRequested Ask Simulink to terminate the
simulation at the end of the current
time step.

10-19

10 S-Function SimStruct Functions Reference

State and Work Vector

Macro Description

ssGetContStates Get an S-function’s continuous
states.

ssGetDiscStates Get an S-function’s discrete states.

ssGetDWork Get a DWork vector.

ssGetDWorkComplexSignal Determine whether the elements of
a DWork vector are real or complex
numbers.

ssGetDWorkDataType Get the data type of a DWork vector.

ssGetDWorkName Get the name of a DWork vector.

ssGetDWorkUsageType Determine how the DWork vector is
used in S-function.

ssGetDWorkUsedAsDState Determine whether a DWork vector
is used as a discrete state vector.

ssGetDWorkWidth Get the size of a DWork vector.

ssGetdX Get the derivatives of the continuous
states of an S-function.

ssGetIWork Get an S-function’s integer-valued
(int_T) work vector.

ssGetIWorkValue Get a value from a block’s integer
work vector.

ssGetModeVector Get an S-function’s mode work
vector.

ssGetModeVectorValue Get an element of a block’s mode
vector.

ssGetNonsampledZCs Get an S-function’s zero-crossing
signals vector.

ssGetNumContStates Determine the number of continuous
states that an S-function has.

10-20

SimStruct Macros and Functions Listed by Usage

Macro Description

ssGetNumDiscStates Determine the number of discrete
states that an S-function has.

ssGetNumDWork Get the number of data type work
vectors used by a block.

ssGetNumIWork Get the size of an S-function’s integer
work vector.

ssGetNumModes Determine the size of an S-function’s
mode vector.

ssGetNumNonsampledZCs Determine the number of
nonsampled zero crossings that
an S-function detects.

ssGetNumPWork Determine the size of an S-function’s
pointer work vector.

ssGetNumRWork Determine the size of an S-function’s
real-valued (real_T) work vector.

ssGetPWork Get an S-function’s pointer (void *)
work vector.

ssGetPWorkValue Get a pointer from a pointer work
vector.

ssGetRealDiscStates Get the real (real_T) values of an
S-function’s discrete state vector.

ssGetRWork Get an S-function’s real-valued
(real_T) work vector.

ssGetRWorkValue Get an element of an S-function’s
real-valued work vector.

ssSetDWorkComplexSignal Specify whether the elements of a
data type work vector are real or
complex.

ssSetDWorkDataType Specify the data type of a data type
work vector.

10-21

10 S-Function SimStruct Functions Reference

Macro Description

ssSetDWorkName Specify the name of a data type work
vector.

ssSetDWorkUsageType Specify how the DWork vector is
used in S-function.

ssSetDWorkUsedAsDState Specify that a data type work vector
is used as a discrete state vector.

ssSetDWorkWidth Specify the width of a data type work
vector.

ssSetIWorkValue Set an element of a block’s integer
work vector.

ssSetModeVectorValue Set an element of a block’s mode
vector.

ssSetNumContStates Specify the number of continuous
states that an S-function has.

ssSetNumDiscStates Specify the number of discrete states
that an S-function has.

ssSetNumDWork Specify the number of data type
work vectors used by a block.

ssSetNumIWork Specify the size of an S-function’s
integer (int_T) work vector.

ssSetNumModes Specify the number of operating
modes that an S-function has.

ssSetNumNonsampledZCs Specify the number of zero crossings
that an S-function detects.

ssSetNumPWork Specify the size of an S-function’s
pointer (void *) work vector.

ssSetNumRWork Specify the size of an S-function’s
real (real_T) work vector.

10-22

SimStruct Macros and Functions Listed by Usage

Macro Description

ssSetPWorkValue Set an element of a block’s pointer
work vector.

ssSetRWorkValue Set an element of a block’s
floating-point work vector.

Code Generation

Macro Description

ssGetDWorkRTWIdentifier Get the identifier used to declare
a DWork vector in code generated
from the associated S-function.

ssGetDWorkRTWIdentifierMust-
ResolveToSignalObject

Get a flag indicating if a
DWork vector resolves to a
Simulink.Signal object.

ssGetDWorkRTWStorageClass Get the storage class of a DWork
vector in code generated from the
associated S-function.

ssGetDWorkRTWTypeQualifier Get the C type qualifier (e.g., const)
used to declare a DWork vector in
code generated from the associated
S-function.

ssGetPlacementGroup Get the name of the placement group
of a block.

ssRTWGenIsCodeGen Identify any code generation that is
not used by the Accelerator.

ssSetDWorkRTWIdentifier Set the identifier used to declare
a DWork vector in code generated
from the associated S-function.

ssSetDWorkRTWIdentifierMust-
ResolveToSignalObject

Specify if a DWork vector resolves to
a Simulink.Signal object.

10-23

10 S-Function SimStruct Functions Reference

Macro Description

ssSetDWorkRTWStorageClass Set the storage class of a DWork
vector in code generated from the
associated S-function.

ssSetDWorkRTWTypeQualifier Set the C type qualifier (e.g., const)
used to declare a DWork vector in
code generated from the associated
S-function.

ssSetPlacementGroup Specify the name of the placement
group of a block.

ssWriteRTW2dMatParam Write a Simulink matrix parameter
to the S-function’s model.rtw file.

ssWriteRTWMx2dMatParam Write a MATLAB matrix parameter
to the S-function’s model.rtw file.

ssWriteRTWMxVectParam Write a MATLAB vector parameter
to the S-function’s model.rtw file.

ssWriteRTWParameters Write tunable parameters to the
S-function’s model.rtw file.

ssWriteRTWParamSettings Write settings for the S-function’s
parameters to the model.rtw file.

ssWriteRTWScalarParam Write a scalar parameter to the
S-function’s model.rtw file.

ssWriteRTWStr Write a string to the S-function’s
model.rtw file.

ssWriteRTWStrParam Write a string parameter to the
S-function’s model.rtw file.

ssWriteRTWStrVectParam Write a string vector parameter to
the S-function’s model.rtw file.

ssWriteRTWVectParam Write a Simulink vector parameter
to the S-function’s model.rtw file.

ssWriteRTWWorkVect Write the S-function’s work vectors
to the model.rtw file.

10-24

SimStruct Macros and Functions Listed by Usage

Miscellaneous

Macro Description

ssCallExternalModeFcn Invoke the external mode function
for an S-function.

ssGetModelName Get the name of an S-Function block
or model containing the S-function.

ssGetParentSS Get the parent of an S-function.

ssGetPath Get the path of an S-function or the
model containing the S-function.

ssGetRootSS Return the root (model) SimStruct.

ssGetUserData Access user data.

ssSetExternalModeFcn Specify the external mode function
for an S-function.

ssSetOptions Set various simulation options.

ssSetPlacementGroup Specify the execution order of a sink
or source S-function.

ssSetUserData Specify user data.

ssSupportsMultipleExecInstances Allow an S-function to operate
within a For Each Subsystem.

10-25

10 S-Function SimStruct Functions Reference

10-26

11

S-Function Options —
Alphabetical List

This section describes the S-function options available through
ssSetOptions. Each S-function sets its applicable options at the end of its
mdlInitializeSizes method. Use the OR operator (|) to set multiple options.
For example:

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE |
SS_OPTION_DISCRETE_VALUED_OUTPUT);

SS_OPTION_ALLOW_CONSTANT_PORT_SAMPLE_TIME

Purpose Allow constant sample time for a port

Description Allows an S-function with port-based sample times to specify or inherit
constant sample times. Setting this option tells the Simulink engine
that all input and output ports support constant sample times. See
“Specifying Constant Sample Time for a Port” on page 8-39 for more
information.

Example See sfun_port_constant.c, the source file for the
sfcndemo_port_constant example, for an example.

See Also SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME

11-2

SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION

Purpose Allow scalar expansion of input ports

Description Specifies that the input to your S-function input ports can be have a
width of either 1 or the size specified by the port, usually referred to
as the block width. The S-function expands scalar inputs to the same
dimensions as the block width. See “Scalar Expansion of Inputs” on
page 8-25 for more information.

Example See sfun_multiport.c, the source file for the
sfcndemo_sfun_multiport example, for an example.

11-3

SS_OPTION_ALLOW_PARTIAL_DIMENSIONS_CALL

Purpose Allow calls to mdlSetInputPortDimensionInfo and
mdlSetOutputPortDimensionInfo with partial dimension
information

Description Indicates the S-function can handle dynamically dimensioned
signals. By default, the Simulink engine calls the
mdlSetInputPortDimensionInfo or mdlSetOutputPortDimensionInfo
methods if the number of dimensions and size of each
dimension for the candidate port are fully known. If
SS_OPTION_ALLOW_PARTIAL_DIMENSIONS_CALLS is set, the engine
may also call these methods with partial dimension information.
For example, the methods may be called when the port width
is known, but the actual 2-D dimensions are unknown. See
mdlSetDefaultPortDimensionInfo for more information.

See Also mdlSetDefaultPortDimensionInfo

11-4

SS_OPTION_ALLOW_PORT_SAMPLE_TIME_IN_TRIGSS

Purpose Allow an S-function with port-based sample times to operate in a
triggered subsystem

Description Allows an S-function that uses port-based sample times to operate in a
triggered subsystem. During sample time propagation, use the macro
ssSampleAndOffsetAreTriggered to determine if the sample and
offset times correspond to the block being in a triggered subsystem. If
the block is triggered, all port sample times must be either triggered
or constant. See “Configuring Port-Based Sample Times for Use in
Triggered Subsystems” on page 8-41 for more information.

Example See sfun_port_triggered.c, the source file for the
sfcndemo_port_triggered example, for an example.

See Also ssSampleAndOffsetAreTriggered

11-5

SS_OPTION_ASYNC_RATE_TRANSITION

Purpose Create a read-write pair of blocks that ensure correct data transfer

Description Creates a read-write pair of blocks intended to guarantee correct data
transfers between a synchronously (periodic) and an asynchronously
executing subsystem or between two asynchronously executing
subsystems. Both the read S-function and write S-function should set
this option.

An asynchronously executed function-call subsystem is a function-call
subsystem driven by an S-function with the SS_OPTION_ASYNCHRONOUS
specified.

The Simulink engine defines two classes of asynchronous rate
transitions.

• Read-write pairs. In this class, two blocks, using a technique such as
double buffering, ensure data integrity in amultitasking environment.
When creating the read-write pair of blocks, the S-functions for these
blocks should set the SS_OPTION_ASYNC_RATE_TRANSITION option.
Furthermore, the MaskType property of the read block, must include
the string read and the MaskType property of write block must
include the string write.

• A single protected or unprotected block. To create a single Protected
Rate Transition block, create a subsystem that contains the following

and set the Tag value of the Outport block to AsyncRateTransition.
The S-function then provides the code for the protected
transition. Note, this S-function does not set the
SS_OPTION_ASYNC_RATE_TRANSITION option.

See Also SS_OPTION_ASYNCHRONOUS

11-6

SS_OPTION_ASYNCHRONOUS

Purpose Specify this S-function drives a function-call subsystem attached to
interrupt service routines

Description Specifies that the S-function is driving function-call subsystems
attached to interrupt service routines. This option applies only to
S-functions that have no input ports during code generation and 1
output port. During simulation, the S-function may have an input
port to provide a condition on which to execute. The output port must
be configured to perform function calls on every element. If any of
these requirements is not met, the SS_OPTION_ASYNCHRONOUS option
is ignored. Specifying this option

• Informs the Simulink engine that there is no implied data
dependency involving the data sources or destinations of the
function-call subsystem called by the S-function.

• Causes the function-call subsystem attached to the S-function to be
colored cyan, indicating that it does not execute at a periodic rate.

• Enables additional checks to verify that the model is constructed
correctly.

1 The engine validates that the appropriate asynchronous rate
transition blocks reside between the cyan function-call subsystem.
The engine also checks that period tasks exists. You can directly
read and write from the function-call subsystem by using a
block that has no computational overhead. To ensure safe task
transitions between period and asynchronous tasks, use the
SS_OPTION_ASYNC_RATE_TRANSITION option.

2 For data transfers between two asynchronously executed (cyan)
function-call subsystem, the engine validates that the appropriate
asynchronous task transition blocks exits.

See Also SS_OPTION_ASYNC_RATE_TRANSITION

11-7

SS_OPTION_CALL_TERMINATE_ON_EXIT

Purpose Force call to mdlTerminate

Description Guarantees the Simulink engine calls the S-function’s mdlTerminate
method before destroying a block that references the S-function.
Calling mdlTerminate allows your S-function to clean up after itself,
for example, by freeing memory it allocated during a simulation. The
engine destroys an S-function block under the following circumstances.

1 A simulation ends either normally or as a result of invoking
ssSetErrorStatus.

2 A user deletes the block.

3 The engine eliminates the block as part of a block reduction
optimization (see “Block reduction”).

If this option is not set, the engine calls your S-function’s mdlTerminate
method only if the mdlStart method of at least one block in the model
containing the S-function executed without error.

Example See the S-function sfun_runtime3.c for an example.

See Also mdlTerminate

11-8

SS_OPTION_CAN_BE_CALLED_CONDITIONALLY

Purpose Specify this S-function can be called conditionally

Description Specifies that the S-function can be called conditionally by other blocks.
The Simulink engine uses this option to determine if the S-Function
block can be moved into the execution context of the conditionally
executed subsystem in which the S-function resides. See “Conditional
Execution Behavior” in Using Simulink for more information.

Example See the S-function sdotproduct.c used in the Simulink model
sfcndemo_sdotproduct for an example.

11-9

SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME

Purpose Disallow constant sample time inheritance

Description Prohibits the S-Function block that references this
S-function from inheriting a constant sample time. The
SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME option applies only to
S-functions that use block-based sample times.

Note If you have Simulink Coder, and the S-function declares
the number of sample times as PORT_BASED_SAMPLE_TIMES, it
will not inherit a constant sample time unless it specifies the
SS_OPTION_ALLOW_CONSTANT_PORT_SAMPLE_TIME option.

If you have Simulink Coder, note:

• If the S-function specifies this option and inherits a constant
sample time, i.e., a sample time of inf, the Simulink Coder product
determines how to generate code for the block based on if the block is
invariant.

• A block is invariant if all of its ports’ signals are invariant. A signal
is invariant if it has a constant value during the entire simulation. A
constant block sample time does not guarantee all the ports’ signals
are invariant. For more information, see “Inline Invariant Signals”.

• If the block is not invariant, the Simulink Coder product generates
code only in the model_initialize function. If the block is invariant,
the Simulink Coder product eliminates the block’s code altogether.

Example See sfix_fir.cpp for an example.

See Also SS_OPTION_ALLOW_CONSTANT_PORT_SAMPLE_TIME

11-10

SS_OPTION_DISCRETE_VALUED_OUTPUT

Purpose Specify this S-function has discrete valued output

Description Specifies this S-function has discrete valued outputs. With this option
set, the Simulink engine does not assign algebraic variables to this
S-function when it appears in an algebraic loop.

11-11

SS_OPTION_EXCEPTION_FREE_CODE

Purpose Improve performance of exception-free S-functions

Description Improves performance of S-functions that do not use mexErrMsgTxt,
mxCalloc, or any other routines that can throw an exception. An
S-function is not exception free if it contains any routine that, when
called, has the potential of long-jumping out of a block of code and
into another scope. See “Exception Free Code” on page 8-70 for more
information.

Example See vsfunc.c for an example.

See Also SS_OPTION_RUNTIME_EXCEPTION_FREE_CODE

11-12

SS_OPTION_FORCE_NONINLINED_FCNCALL

Purpose Specify generated code format for function-call subsystems called by
this S-function

Description If you have Simulink Coder, indicates that the software should generate
procedures for all function-call subsystems called by this S-function,
instead of possibly inlining the subsystem code. If an S-function sets
this option, Simulink Coder ignores the Inline setting for the Code
generation function packaging option in the Subsystem Parameters
dialog box for the Subsystem block. For more information, see “About
Nonvirtual Subsystem Code Generation”.

11-13

SS_OPTION_NONVOLATILE

Purpose Enable the Simulink engine to remove unnecessary S-Function blocks

Description Specifies this S-function has no side effects. Setting this option enables
the Simulink engine to remove the S-Function block referencing this
S-function during dead branch elimination, if it is not needed.

Example See the S-function sdotproduct.c used in the Simulink model
sfcndemo_sdotproduct for an example.

11-14

SS_OPTION_PLACE_ASAP

Purpose Specify this S-function should be placed as soon as possible

Description Specifies that this S-function should be placed as soon as possible
in the block sorted order. The SS_OPTION_PLACE_ASAP option uses
a hierarchical sorted order such as that used by blocks (“Rules for
Block Priorities”). Within a subsystem, the Simulink engine places
an S-function block using this option as far up in the sorted order as
possible without changing the model’s semantics. If the S-function’s
Priority block property is set, and other blocks in the same subsystem
have the same priority, the engine places S-functions with this option
before the other blocks in the same subsystem with the same priority.
This option is typically used by devices connecting to hardware when
you want to ensure the hardware connection is completed first.

Note Simulink honors the SS_OPTION_PLACE_ASAP option, relative to
other blocks, only if this block and the other blocks are in the same
subsystem. As a result, Simulink does not compare two blocks set
with SS_OPTION_PLACE_ASAP if they exist in different subsystems. In
addition, Simulink might not place blocks with SS_OPTION_PLACE_ASAP
set before blocks without SS_OPTION_PLACE_ASAP set if they are in
different subsystems.

For more information on block sorted orders, see “What Is Sorted
Order?”.

11-15

SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED

Purpose Specify this S-function uses port-based sample times

Description Indicates the S-function registers multiple sample times
(ssSetNumSampleTimes > 1) to specify the rate at which each input and
output port is running. The simulation engine needs this information
when checking for illegal rate transitions. If an S-function uses this
option, it cannot inherit its sample times. See “Hybrid Block-Based and
Port-Based Sample Times” on page 8-43 for more information.

Example See mixedm.c for an example.

11-16

SS_OPTION_REQ_INPUT_SAMPLE_TIME_MATCH

Purpose Specify sample times of input signal and port must match

Description Specifies that the input signal sample times must match the sample
time assigned to the block input port. For example:

generates an error if this option is set. The Simulink engine does not
generate an error if the block or input port sample time is inherited.

11-17

SS_OPTION_RUNTIME_EXCEPTION_FREE_CODE

Purpose Improve performance of run-time exception-free S-functions

Description Improves performance of S-functions that do not use mexErrMsgTxt,
mxCalloc, or any other routines that can throw an exception
inside of a run-time routines. Applicable run-time routines
include mdlGetTimeOfNextVarHit, mdlOutputs, mdlUpdate, and
mdlDerivatives.

See Also SS_OPTION_EXCEPTION_FREE_CODE

11-18

SS_OPTION_SIM_VIEWING_DEVICE

Purpose Indicate S-Function block is a SimViewingDevice

Description Indicates the S-Function block referencing this S-function is a
SimViewingDevice. As long as the block meets the other requirements
for a SimViewingDevice, i.e., no states, no outputs, etc., the Simulink
engine considers the block to be an external mode block. As an external
mode block, the block appears in the external mode user interface and
the Simulink Coder product does not generate code for it. During an
external mode simulation, the engine runs the block only on the host.
See “Sim Viewing Devices in External Mode” on page 8-65 in Writing
S-Functions for more information.

11-19

SS_OPTION_SFUNCTION_INLINED_FOR_RTW

Purpose Specify use of TLC file during code generation

Description Indicates the S-function has an associated TLC file and does not
contain an mdlRTW method. Setting this option has no effect if the
S-function contains an mdlRTW method. During code generation, if
SS_OPTION_SFUNCTION_INLINED_FOR_RTW is set and the Simulink Coder
product cannot locate the S-function’s TLC file, the Simulink Coder
product generates an error. If SS_OPTION_SFUNCTION_INLINED_FOR_RTW
is not set but the Simulink Coder product does locate a TLC file for the
S-function, it uses the TLC file.

11-20

SS_OPTION_SUPPORTS_ALIAS_DATA_TYPES

Purpose Support data type aliases

Description Specifies how the S-function handles signals whose data types are
aliases (see Simulink.Aliastype for more information about data type
aliases). If this option is set and the S-function’s inputs and outputs use
data type aliases, SimStruct macros such as ssGetInputPortDataType
and ssGetOutputPortDataType return the data type IDs of those
aliases. However, if this option is not set, the SimStruct macros
return the data type IDs associated with the equivalent built-in data
types instead. For a list of built-in values for the data type ID, see
ssGetInputPortDataType.

Note If you have Simulink Coder, and this option is not set and
the S-function’s inputs use data type aliases, the Simulink engine
attempts to propagate the aliases to the S-function’s outputs.
However, this process can fail, in which case the engine propagates
the equivalent built-in data types instead. To explicitly control the
propagation of data type aliases through an S-function, enable the
SS_OPTION_SUPPORTS_ALIAS_DATA_TYPES option.

11-21

SS_OPTION_USE_TLC_WITH_ACCELERATOR

Purpose Use TLC file when simulating in accelerated mode

Description Forces the Simulink Accelerator mode to use the Target Language
Compiler (TLC) inlining code for the S-function, which speeds up
execution of the S-function. If this option is not set, the Simulink
Accelerator mode uses the MEX version of the S-function even if a TLC
file for the S-function exists. This option should not be set for device
driver blocks (A/D) or when there is an incompatibility between running
the MEX mdlStart or mdlInitializeConditions functions together
with the TLC Outputs, Update, or Derivatives functions. Also, this
option indicates that the TLC inlining code should be used when
generating a simulation target for a referenced model that contains
this S-function.

Note The Simulink Accelerator mode does not require the Simulink
Coder product to run an inlined S-function. However, to ensure that the
inlined S-function can run in accelerated mode in current and future
Simulink releases, the TLC file for the S-function must use documented
TLC functions to access the CompiledModel structure.

Example See the S-function timestwo.c used in the Simulink model
sfcndemo_timestwo for an example.

11-22

SS_OPTION_WORKS_WITH_CODE_REUSE

Purpose Specify this S-function supports code reuse

Description Signifies that this S-function is compatible with the Simulink Coder
product subsystem code reuse feature. See “S-Functions That Support
Code Reuse” in the "Simulink Coder User’s Guide" for more information.
If this option is not set, the Simulink Coder product will not reuse any
subsystem containing this S-Function.

Example See timestwo.c for an example.

11-23

	toc
	Overview of S-Functions
	What Is an S-Function?
	Use S-Functions in Models
	Overview
	Passing Parameters to S-Functions
	When to Use an S-Function

	How S-Functions Work
	Introduction
	Mathematics of Simulink Blocks
	Simulation Stages
	S-Function Callback Methods

	Implementing S-Functions
	MATLAB S-Functions
	MEX S-Functions
	MEX Versus MATLAB S-Functions

	S-Function Callback Methods
	Callback Methods Overview
	Callback Methods for C MEX S-Functions
	Required Callback Methods
	Optional Callback Methods

	Callback Methods for Level-2 MATLAB S-Functions
	Required Callback Methods
	Optional Callback Methods

	S-Function Concepts
	Direct Feedthrough
	Dynamically Sized Arrays
	Setting Sample Times and Offsets
	Valid C MEX S-Function Sample Times
	Valid Level-2 MATLAB S-Function Sample Times
	Guidelines for Choosing a Sample Time

	S-Function Examples
	Overview of Examples
	Level-2 MATLAB S-Function Examples
	Level-1 MATLAB S-Function Examples
	C S-Function Examples
	Fortran S-Function Examples
	C++ S-Function Examples

	Selecting an S-Function Implementation
	Available S-Function Implementations
	S-Function Types
	Implement S-Functions
	S-Function Features
	S-Function Limitations
	S-Functions Incorporate Legacy C Code
	Overview
	Using a Hand-Written S-Function to Incorporate Legacy Code
	Using the S-Function Builder to Incorporate Legacy Code
	Using the Legacy Code Tool to Incorporate Legacy Code

	Writing S-Functions in MATLAB
	Introduction
	Write Level-2 MATLAB S-Functions
	About Level-2 MATLAB S-Functions
	About Run-Time Objects
	Level-2 MATLAB S-Function Template
	Level-2 MATLAB S-Function Callback Methods
	Using the setup Method
	Example of Writing a Level-2 MATLAB S-Function
	Instantiating a Level-2 MATLAB S-Function
	Operations for Variable-Size Signals
	Generating Code from a Level-2 MATLAB S-Function
	MATLAB S-Function Examples

	Maintain Level-1 MATLAB S-Functions
	About the Maintenance of Level-1 MATLAB S-Functions
	Level-1 MATLAB S-Function Arguments
	Level-1 MATLAB S-Function Outputs
	Define S-Function Block Characteristics
	Processing S-Function Parameters
	Convert Level-1 MATLAB S-Functions to Level-2

	Writing S-Functions in C
	Introduction
	About Writing C S-Functions
	Creating C MEX S-Functions

	Build S-Functions Automatically
	About Building S-Functions Automatically
	Deploying the Generated S-Function
	How the S-Function Builder Builds an S-Function

	S-Function Builder Dialog Box
	About S-Function Builder
	Parameters/S-Function Name Pane
	S-function name
	S-function parameters
	Build/Save
	Hide/Show S-function editing tabs

	Port/Parameter Pane
	Initialization Pane
	Number of discrete states
	Discrete states IC
	Number of continuous states
	Continuous states IC
	Sample mode
	Sample time value

	Data Properties Pane
	Input Ports Pane
	Port name
	Dimensions
	Rows
	Columns
	Complexity
	Bus
	Bus Name

	Output Ports Pane
	Port name
	Dimensions
	Rows
	Columns
	Complexity
	Bus
	Bus Name

	Parameters Pane
	Parameter name
	Data type
	Complexity

	Data Type Attributes Pane
	Port
	Data Type

	Libraries Pane
	Library/Object/Source files
	Includes
	External function declarations

	Outputs Pane
	Code description
	Inputs are needed in the output function

	Continuous Derivatives Pane
	Discrete Update Pane
	Build Info Pane
	Compilation diagnostics
	Show compile steps
	Create a debuggable MEX-File
	Generate wrapper TLC
	Save code only
	Enable access to SimStruct
	Additional methods

	Example: Modeling a Two-Input/Two-Output System
	Initializing S-Function Settings
	Initializing Inputs, Outputs, and Parameters
	Defining the Output Method
	Defining the Discrete Update Method
	Building the State-Space Example

	Basic C MEX S-Function
	Introducing an Example of a Basic C MEX S-Function
	Defines and Includes
	Callback Method Implementations
	mdlInitializeSizes
	mdlInitializeSampleTimes
	mdlOutputs
	mdlTerminate

	Simulink/Simulink Coder Interfaces
	Building the Timestwo Example

	Templates for C S-Functions
	About the Templates for C S-Functions
	S-Function Source File Requirements
	Statements Required at the Top of S-Functions
	Callback Methods That an S-Function Must Implement
	Statements Required at the Bottom of S-Functions

	The SimStruct
	Data Types in S-Functions
	Compiling C S-Functions

	Integrate C Functions Using Legacy Code Tool
	Overview
	Example of Integrating Existing C Functions into Simulink Models
	Registering Legacy Code Tool Data Structures
	Declaring Legacy Code Tool Function Specifications
	Return Specification
	Function Name
	Argument Specification
	Supported Data Types
	Legacy Code Tool Function Specification Rules
	Legacy C Function Rules

	Generating and Compiling the S-Functions
	Generating a Masked S-Function Block for Calling a Generated S-F
	Forcing Simulink Accelerator Mode to Use S-Function TLC Inlining
	Calling Legacy C++ Functions
	Handling Multiple Registration Files
	Deploying Generated S-Functions
	Legacy Code Tool Examples
	Legacy Code Tool Limitations

	Simulink Engine Interaction with C S-Functions
	Introduction
	Process View
	Calling Structure for Code Generation
	Alternate Calling Structure for External Mode

	Data View
	Accessing Signals Using Pointers
	Accessing Contiguous Input Signals
	Accessing Input Signals of Individual Ports

	Write Callback Methods
	S-Functions in Normal Mode Referenced Models
	Supporting the Use of Multiple Instances of Referenced Models Th

	Debug C MEX S-Functions
	About Debugging C MEX S-Functions
	Debug in Simulink Environment
	Debugging Techniques

	Debug Using Third-Party Software
	Debugging C MEX S-Functions Using the Microsoft Visual C++ .NET
	Debugging C MEX S-Functions on The Open Group UNIX Platforms

	Convert Level-1 C MEX S-Functions
	Guidelines for Converting Level-1 C MEX S-Functions to Level-2
	Obsolete Macros

	Creating C++ S-Functions
	Create a C++ Source File
	Make C++ Objects Persistent
	Build C++ S-Functions
	C++ References

	Creating Fortran S-Functions
	Level-1 Versus Level-2 S-Functions
	Create Level-1 Fortran S-Functions
	Fortran MEX Template File
	Example of a Level-1 Fortran S-Function
	Inline Code Generation Example

	Create Level-2 Fortran S-Functions
	About Creating Level-2 Fortran S-Functions
	Template File
	C/Fortran Interfacing Tips
	MEX Environment
	Compiler Compatibility
	Symbol Decorations
	Fortran Math Library
	CFortran
	Choosing a Fortran Compiler

	Constructing the Gateway
	Simple Case
	Code with States
	Setup Code
	SUBROUTINE Versus PROGRAM
	Arguments to a SUBROUTINE
	Arguments to a FUNCTION
	Interfacing to COMMON Blocks

	Example C MEX S-Function Calling Fortran Code
	Building Gateway C MEX S-Functions on a Windows System
	Building Gateway C MEX S-Functions on a UNIX System

	Port Legacy Code
	Find the States
	Sample Times
	Store Data
	Use Flints if Needed
	Considerations for Real Time

	Using Work Vectors
	DWork Vector Basics
	What is a DWork Vector?
	Advantages of DWork Vectors
	DWork Vectors and the Simulink Engine
	DWork Vectors and the Simulink Coder Product

	Types of DWork Vectors
	How to Use DWork Vectors
	Using DWork Vectors in C MEX S-Functions
	DWork Vector C MEX Macros
	Using DWork Vectors in Level-2 MATLAB S-Functions
	Using DWork Vectors With Legacy Code

	DWork Vector Examples
	General DWork Vector
	DWork Scratch Vector
	DState Work Vector
	DWork Mode Vector
	Level-2 MATLAB S-Function DWork Vector

	Elementary Work Vectors
	Description of Elementary Work Vector
	Relationship to DWork Vectors
	Using Elementary Work Vectors
	Additional Work Vector Macros
	Elementary Work Vector Examples
	Pointer Work Vector
	Real and Integer Work Vectors
	Mode Vector

	Implementing Block Features
	Dialog Parameters
	About Dialog Parameters
	Using C S-Function Dialog Parameters
	Using Level-2 MATLAB S-Function Dialog Parameters

	Tunable Parameters
	Using Tunable Parameters in a C S-Function
	Using Tunable Parameters in a Level-2 MATLAB S-Function
	Tuning Parameters in External Mode

	Run-Time Parameters
	About Run-Time Parameters
	Creating Run-Time Parameters
	Creating Run-Time Parameters All at Once
	Creating Run-Time Parameters Individually
	Creating Run-Time Parameters from Multiple S-Function Parameters

	Updating Run-Time Parameters
	Updating All Parameters at Once
	Updating Parameters Individually
	Updating Parameters as Functions of Multiple S-Function Paramete

	Tuning Run-Time Parameters
	Accessing Run-Time Parameters

	Input and Output Ports
	Creating Input Ports for C S-Functions
	Initializing Input Port Dimensions
	Sizing an Input Port Dynamically
	Example: Defining Multiple S-Function Input Ports

	Creating Input Ports for Level-2 MATLAB S-Functions
	Creating Output Ports for C S-Functions
	Creating Output Ports for Level-2 MATLAB S-Functions
	Scalar Expansion of Inputs
	Masked Multiport S-Functions

	Custom Data Types
	Custom Data Types in C S-Functions
	Using Simulink Recognizable Data Types in C S-Functions
	Using Opaque Data Types in C S-Functions
	Using Custom Data Types in Level-2 MATLAB S-Functions

	Sample Times
	About Sample Times
	Block-Based Sample Times
	Specifying the Number of Sample Times in mdlInitializeSizes
	Setting Sample Times and Specifying Function Calls in mdlInitial
	Example: mdlInitializeSampleTimes

	Specifying Port-Based Sample Times
	Specifying Inherited Sample Time for a Port
	Specifying Constant Sample Time for a Port
	Configuring Port-Based Sample Times for Use in Triggered Subsyst

	Hybrid Block-Based and Port-Based Sample Times
	Multirate S-Function Blocks
	Example of Defining a Sample Time for a Continuous Block
	Example of Defining a Sample Time for a Hybrid Block

	Multirate S-Functions and Sample Time Hit Calculations
	Synchronizing Multirate S-Function Blocks
	Specifying Model Reference Sample Time Inheritance
	Sample-Time Inheritance Rule Example

	Zero Crossings
	S-Function Compliance with the SimState
	SimState Compliance Specification for Level-2 MATLAB S-Functions
	SimState Compliance Specification for C-MEX S-Functions

	Matrices in C S-Functions
	MX Array Manipulation
	Memory Allocation

	Function-Call Subsystems and S-Functions
	Sim Viewing Devices in External Mode
	Frame-Based Signals
	About Frame-Based Signals
	Using Frame-Based Signals in C S-Functions
	Using Frame-Based Signals in Level-2 MATLAB S-Functions

	Error Handling
	About Handling Errors
	Exception Free Code
	ssSetErrorStatus Termination Criteria
	Checking Array Bounds

	C MEX S-Function Examples
	About S-Function Examples
	Continuous States
	matlabroot/simulink/src/csfunc.c

	Discrete States
	matlabroot/simulink/src/dsfunc.c

	Continuous and Discrete States
	matlabroot/simulink/src/mixedm.c

	Variable Sample Time
	matlabroot/simulink/src/vsfunc.c

	Array Inputs and Outputs
	matlabroot/simulink/src/sfun_matadd.c

	Zero-Crossing Detection
	matlabroot/simulink/src/sfun_zc_sat.c

	Discontinuities in Continuous States
	matlabroot/simulink/src/stvctf.c

	S-Function Callback Methods — Alphabetical List
	S-Function SimStruct Functions Reference
	S-Function SimStruct Functions
	About SimStruct Functions
	Language Support
	The SimStruct

	SimStruct Macros and Functions Listed by Usage
	Buses
	Data Type
	Dialog Box Parameters
	Error Handling and Status
	Function Call
	Input and Output Ports
	Model Reference
	Run-Time Parameters
	Sample Time
	Simulation Information
	State and Work Vector
	Code Generation
	Miscellaneous

	S-Function Options — Alphabetical List

	tables
	Features of Hand-Written S-Functions
	Features of Automatically Generated S-Functions
	Flag Argument
	Fields in the sizes Structure
	Header Files Included by simstruc.h When Compiling as a MEX File
	Header Files Included by simstruc.h When Used by the Simulink Co
	I/O Port — Signal Specification
	I/O Port — Signal Dimensions
	I/O Port — Signal Access

